ON RELATIONS AMONG SOME CONSTANTS
OF AN ENTIRE FUNCTION

J. GOPALA KRISHNA

Throughout this paper f(x) stands for a function, positive and in-
creasing for real x=1, p for a fixed finite positive real, and

L = L(p, f) sup
for lim xPf(x)
L=, ) 7 int
M = M(p,f) sip
for lim xP f f(®) /1.
m = m(p, f) e inf '

If P(2) is an entire function of order p, it is known that (1) M, m
are its type and co-type, in case f happens to be the rank (or position)
function of the maximum term of the Maclaurin series of P (see
Chapter II of [1] and Chapter II of [2]) and that (2) M and m are
the logarithmic type and co-type of P, if f(x) is the number of zeroes
z of P(z) such that |z| <x (see Jensen's Theorem, Chapter III of
[2]).

Also let ¢(f) and () stand for the extended real valued strictly
decreasing and continuous functions over the closed (0, 1), defined
by the equations (see Lemmas I and II of [3])

(1 — ¢() expd()) = ¢,
(1 + ) exp(—=y(®) = ¢.

C. R. Rao, improving upon a number of results known earlier, has
shown (see [3] and its corrigendum),

TueoreM I'. For an f

(1) ISpm=pM =L,

(2) LEMin[pM exp (1—mp/L, pM exp ¢(m/M)],

(3) mp/[1+¥(m/M)] <mp/[1+log(Mp/1)] <1,
with certain conventions such as m/ M =0 if either of m, M is 0 or 4+ =
(explicitly stated in [4]), so arranged as to make the group (1), (2), (3)
include the statements

4) ‘L=4w0oM=4x’,
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(5) ‘L=0-M=0’, and
(6) ‘In the presence of M <+, l=0—-m=0".

The genesis of this paper lies in an attempt to obtain a complete
class of independent relations between the four constants L, M, m, I
of an f. The lemma proved in this paper (useful in a number of other
contexts not considered here) enables one to find all classes of inde-
pendent relations in the case of several relations between nonnega-
tive reals, expressed by (1), (2) and (3), brings out the relation be-
tween ¢ and ¢, and leads to Theorems I and II. I prove a more pre-
cise form of (2) and (3):

THEOREM 1. For an f, with the conventions of Theorem 1’,

(i) L=pM exp (1—mp/L) <pM exp ¢(m/M),
and further this holds with only one of < or = throughout, except when
m=0and L <epM.

(i) mp/[1+¢(m/M)] <mp/[1+log (Mp/]) =1,
holds with only one of < or = throughout, except when 1>0 and
M=+4w.

C. R. Rao deduces from (2) of Theorem I’,

TreoreM I1'. For an entire function of order p and of positive finite
type 1, for which f is the counting function of zeros [1]

L < pr Min[exp (1 — I/L), exp ¢(¥/p7)],
while in an earlier paper (5], S. M. Shah has shown that
L = prexp(l — I/L).
Here I prove

THEOREM 11. For an entire function of order p and type T for which f
s the counting function of zeroes,

L = prexp(l — I/L) < pr exp ¢(/p7)

(with the additional convention that l/pr =0, if either of 1 or T is O or
+ ) and further this holds with only one of < or = throughout, except
in the case |=0 and L <ept, and in case L <+ « and 7=+ .

The discussion of a complete class of relations between the four
constants of an f for which lim sup,... log f(x) /log x=p is of interest
in connection with the study of an entire function of order p. This is
lengthy and I postpone it.
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LeMMA. Let R stand throughout for any chosen one of the relations
<, = or >. Let 0<asb<+w, and 0<c<+». Let, for brevity,
a=a/[1+¥(a/b)] and B="b exp ¢(a/b). Then

(A) (i) Py:‘cRB, Ps: ‘bexp (1—a/c)RB', and P3: ‘cRbexp (1—a/c)’,
are equivalent, in case cZa;

(ii) in case c<a, P, and P, hold with < for R and Pjalso so holds, if
and only if further c>a; and

(B) (i) Ps:‘aRc’, Ps:‘a[1+log (b/c) |Ra’,and Ps:‘aRc[1+log (b/c)]",
are equivalent, in case c<b;

(ii) 2n case c¢>b, Py and Py hold with < for R and Pg also so holds,
if and only if further ¢ <.

ProoF oF (A)(i). Let ¢! stand for the inverse function of ¢. Since,
by the definition of ¢, a/b=[1—¢(a/b)] exp ¢(a/b), we have,

Py ‘a/bR(a/c) exp ¢(a/b)’ & ‘1 — ¢(a/b)Ra/c’ <> Py;

and on account of the strictly decreasing monotonicity of ¢, and the
fact ‘e = ¢’ and the definition of ¢, by which ¢—1(1 — a/c)
=[1—(1—a/c)] exp (1—a/c) we have,

Py ‘1 — a/cRp(a/b) < ‘(a/b)R$p~(1 — a/c)’

which «‘a/bR(a/c) exp (1—a/c)'«Ps.

PRrOOF OF (A)(ii). Let Y~ stand for the inverse function of y.

The first part of (A) (ii) is obvious.

On account of the strictly decreasing monotonicity of ¢ and the
fact ‘c <@, and the definition of ¥, by which ¢~1(a/c — 1)
=[14(a/c—1)] exp (1—a/c), we have,

P; < ‘a/bR(a/c) exp (1 — a/c)’ © ‘a/bRYY(a/c — 1)’

which ©‘a/c—1RY(a/b)' —'aRc.’

This completes the proof of (A).

Proof of (B) is similar.

ProoF oF THEOREM I. In case 0<m and L< 4+ », by (1), 0<pm
SpM=L<+x, and hence by (2) and the lemma (A) (taking
a=pm, b=pM and c=L), follows (i).

In case L=+ » so is M by (2), and hence (i).

In case m=0 by (2), (i) is trivial.

(i) is similarly proved, by distinguishing the cases 0<], M <+ o0 ;
0=, M<+« (whenm=0by (3)); 0=, M=+ »;0<], M=o,

NoTE. On essentially similar lines, we may improve the more
general Theorem 3 of [4].
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Proor oF THEOREM II. In virtue of (2.5.17) of [1] viz., M<7 and
(2), according to which L and M are either both 0 or both + «, we have,

<+ o’ ‘L <+ o’
‘=0—>‘L=0 and
‘L=+w’_)“r=+w’.

We distinguish the cases 0</, 1<+ »; 7=+, L=+ «; and
7=+, LK+ x;I=0.

In the first case by the above results and (1), 0<I=<pr <+ » and
IS L <+ », and hence by Theorem II’ and (A) of the Lemma follows
the result. In the other cases the result easily follows from Theorem
II’ and the above mentioned facts.
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