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1. Introduction. Absolute Rieszian summability was defined in

1928 by N. Obreschkoff [4; 5] as follows:
Definition 1. Let k>0, and 0=Xi<X2< • • • <X„, X„—>°° as

w—>oo. Let

If the integral

1--).
CO/

/

d    k
.-Cx(co)

a   I aw
doi < oo, a ^ 0,

then y,an is said to be absolutely summable by Rieszian means of

order k and type X, or summable [ P, X, k\.

The case X„ = w is of particular interest in this paper. Summability

\R, n, k\ has been shown by J. M. Hyslop [3] to be equivalent to

absolute Cesàro summability of order k, or summability \C, k\. One

of the principal results shown by Obreschkoff was the consistency of

the | P, n, k\ means; that is, he showed that summability |P, w, k\

implies summability | P, w, k'\, where k'>k.

In this paper we introduce a method of absolute summability based

upon the (a, ß) method of summability defined by Bosanquet and

Linfoot [l]. Just as the Bosanquet-Linfoot method generalized

Riesz's arithmetic mean (P, n, a), the method given here will gen-

eralize absolute Rieszian summability | P, n, a\.

Definition 2. A series ^a„ is said to be absolutely summable

(a, ß), or summable \a, ß\ , where a>0 or a = 0, ß>0, il for each

sufficiently large C,

/,0°| dI—¿-#(«)
o I dw

doj < »,

where

(2)
^    /       nY C

A.Á») = S B ( 1 - -)  log"«-- an,
«<w     \ w/ 1 — n/u
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and B = logß C. Summability | 0, 0| is defined to be absolute con-

vergence.

Thus | a, 0[ summability is the same as | A, re, a\ summability.

Condition (1) is equivalent to the bounded variation of ^„^(co) in

(0, oo). (See [2, p. 605].)

In the present paper it will be proved that \a, ß\ summability is

consistent in the following sense: \ct, ß\ summability implies \a', ß'\

summability, where either a'>a or a'=a, ß'>ß. In a future paper,

the authors propose to show some applications of | a, ß\ summability

analogous to known results for absolute Rieszian, or Cesàro, sum-

mability.

2. Lemmas.

Lemma 1. Let fix), kiu), and A (re) satisfy the following conditions:

(i) For some re 2:0, Vq (x_n/(x)) < °o for all T>0. (A will be assumed

throughout that for x = 0, the function x~nfix) is replaced by

lima:,+ox_n/(x).)

(ii) kiu) is absolutely continuous in [0, l].

(iii) Kiu) is positive, continuously differentiable in [0, I), Lebesgue

integrable over [0, l], lim„_i- A(m) = + =° and uK'iu)/Kiu) is non-

decreasing.

Let

Fix) = x-" I   Kiu)fxu)du;       G(x) = ar» I    k(u)K(u)f(xu)du.
Jo " o

Then F0"G(x)^7F0"P(x), where y=fl\ k'(u)\du+\ k(l)\.

Proof. For A>0 let p be a partition, 0 = x0<xi< ■ • • <xx=T,

of [0, T]. Corresponding to this partition let us define

and

Then

(3)

Aifi, u) = Xi fiux¡) — Xi-ifiuXi-i)

AGi = Gixi) — G(xj_i), i = I, 2, • • • , N.

kiu)Kiu)Aif, u)du
o

An integration by parts of the right side of (3) leads to the inequal-

ity

(4) £ I AG<|   úCi+ f   \k'iu)\  £   ÇUKit)Aifi,t)dt
(p) ^ 0 (p) IJ o

du,
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where Cx=\k(l)\ V$F(x). Since £<p) | fu0K(t)A(fi, t)dt\ is a continu-

ous function of u, (4) becomes, with the aid of the first mean-value

theorem,

(5) K(u)A(fi} u)d
0

where C2 = /¿| k'(u)\du and 0^m0 = 1.

I f m0 = 0 or 1, the right side of (5) is clearly no greater than y VgF(x),

where7 =/¿¡ k'(u)\ du+\ k(l)\. If 0<«0<1, then after changing vari-

ables and integrating by parts, (5) becomes

(6)

„1 , C „ I u0K(uu0)  r "
y I Ad I  iCx + C2\y.\ —~~-       K(t)A(fi,
(p) \  (p) I     a(w)     J o

tm)dt

r1 d / K(uu0) \ r " )
~U° T\     rr,   N     ) K(t)A(fi,tUo)dtdu    }

J 0   du\   K(u)   /Jo !

But hypothesis (iii) implies that the integrated part vanishes at both

limits, and that (d/du) {K(uua)/K(u)} SO. Again applying the first

mean-value theorem, it follows from (6) that

(7) Z I AG<|   = Ci + C2«o y\ f lK(u)A(fi,uuo)d
(p) (p) IJ 0

where O^Wi^l.

Repetition of the steps leading from (5) to (7) gives the result,

(8)

where

K(uUm)A(fi
0

uTlm)du

n„ II«»,    0 ^ «r is 1,    m„ 5^ 0, 1 for v < m,   m = 1,2, • • ■

From (8) we shall deduce that

(9) E I AC, I   áyFoF(x).
(p)

There are two cases to consider.

Case 1. For some ?w, either um = 0 or 1. It is not difficult to verify

then that £(p) |AG¿| SCu or ¿w |AG<| úCx+C2(Ilm)"+1V!n"F(x),

respectively. In either case (9) is clearly satisfied. This case for m = Q

has been settled already.
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Case 2. Suppose um¿¿0, 1 for all m. Since {LTm) is a monotone se-

quence, LTm—>A as ?w—>co, 0^A<1. If£ = 0 then

n»£   f Kiuum)Aif, uUm)du  ^2MA(nm)»+» f Kiu)du = e>(l)
(p) I J o Jo

as m—>co, where M=l.u.b.  [x_n/(x)] over [0, T]. Hence (9) holds

when A = 0.

Finally, if Aj^O, then necessarily \imm^.xum=l. Since each inte-

grand in (8) is majorized by a summable function, a well-known theo-

rem of Lebesgue integration may be applied to (8) to give

£ | AG.-I  =g C, + C2L £| f K(u)A(fi, uL)du
(p) (p) I * o

g Ci + C2L"+1ForiP(x)

g 7ForP(x).

Thus the truth of (9) has been established for each partition p and

each 7>0. From (9) it follows that F0rG(x) èyVgF(x), and from this

the lemma.

Lemma 2. Lemma 1 remains valid if condition (iii) is replaced by:

(Hi)*. K(u) is constant in [0, l].

Proof. An argument similar to that in the preceding lemma will

show that (8) also holds under (hi)*. Then (9) is easily verified, and

the conclusion follows.

3. The consistency theorem.

Theorem. // £a„ is summable |a, ß\, then it is summable \ a', ß'\,

for a'>a, or a'=a, ß'>ß.

Proof.

Case 1. a = j3 = 0. We must show that absolute convergence of the

series implies \a', ß'\ summability, where a!>0 or a' = 0, j3'>0. Let

C
$« d(u) = Bu" log"3 — ,        if u ¿¿ 0,

(10) u

$«,0(0) = 0,      if a > 0    or    a = 0, ß > 0.

Then, what we have to show is the convergence of the integral

f «M 1           ,     /        «\       |
I      — 2-, $«',0' ( !-) na« dw-

J o    I w2 „<w \ CO /
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Noting that for w<co, <Ï>V,0'(1 — w/co)>0 for sufficiently large C, we

have1
rx\ 1 ,    /       w\      I
I       — 2-, *«'.fl' 1 1-) nan \dw

J 0      I CO2   „<M \ CO / I

^ rz ki 4 **'.<" i1 --V"
■J 0     n<a> C0¿ \ CO /

A 1      1   f °° n    ,     (        n\
= 2-, I a» I   I     ""I *«',0' I !-) dü>

„=0 ^n       CO2 \ CO/

00 /»I

= Z I a„\        $'a>,a'(u)du
n=0 «^ 0

= £kl-

The result now follows, since 2~L Ia« I is finite.

Case 2. a>0, or a = 0, ß>0. In this case it is known [l, p. 209] that

Aa,ß(o)) has the integral representation,

Aa,ß(u>) =  I    $'a,ß(l — u)A(uu)du,
J 0

where ^l(x) = Zns* an. Let h= [a]; then as in [l, p. 216] Aa,ß(ui) may

be written in the following forms:

4a,u(co)   =   CO   ' $a,ß     (1   —   U)Aj(
J 0

(11) Aa,ß(u) = co     I    $a,ß   (1 — u)Aj(wu)du,
J 0

for j = 0, 1, • • • , h, if a = h, ß>0 or h<a<h + l; for j = 0, 1, • • • ,

h-1, if a = h£l, 0 = 0; where AJ(x)=f*0Ai-x(t)dt and ^0(x)=^l(x).
By choosing the appropriate form in  (11), one finds that for

a'>a or a'=a, ß'>ß,

when a = h, ß^Q, and

l.h+1) ,

(12) 4a',0<(co)   =  CO I       -—-  $a,ßil   ~  U)Ah-x(wu)dU
j 0    $(»)(! _ w)

(13)     Aa.,p(w) = co     I        .1J_,,.,- $a,ß   (1 - u)Ah(ù>u)du
Jo   $(k+1)(l — m)

when a = A, /S>0 or h<a<h + l.

1 For justification of interchange of order of summation and integration, see, e.g.,

Titchmarsh [6, p. 348].
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A routine calculation shows that the first and second factors of the

integrands (12) and (13) satisfy the requirements for kiu) and A (re),

respectively, in Lemma 1 or 2 (whichever is applicable) for C suffi-

ciently large. The theorem now follows immediately from these two

lemmas.
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