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Introduction. In this paper we shall study a compact intrinsic

topology for a lattice and obtain a few relationships between this

topology and certain well-known intrinsic topologies for lattices. We

obtain as a result the fact that for a large class of lattices, compact-

ness of the order topology implies that our compact topology and the

order topology coincide.

Let A be a lattice and {x„}, a net in A. We define the limit inferior,

■L*{x0} = V0Af,S0 Xb, and the limit superior, A*{xa} = A„V¡,;>aX¡). Then,

provided they exist, A*{x„} =A*{xa}. If A*{xa} =L*{xa) =x, we

say that the net {x„} order converges to x. Let C be a subset of L.

C is said to be order closed iff no net in C order converges to a point

outside of C. The collection of order closed sets comprises the closed

sets for a topology for A. We call this topology the order topology

for A and designate it by 0(A).

The collection of sets of the form {x : x ^ c} and {x : x ^ c} for

cGA forms the sub-base of the closed sets of a weaker topology called

the interval topology and designated by /(A). It is known that for

any lattice L, L is complete iff A with the interval topology is com-

pact. (See G. Birkhoff's Lattice theory.)

The complete topology. Definition 1. Let A be a lattice and C,

the collection of all complete subsets of A. Then Q is a subbase of the

closed sets for a topology which we shall denote by A(A). The to-

pology A(A) will be called the complete topology for A.

Lemma 2. Let L be a lattice and 31, a nest of nonempty complete sub-

sets of L. Then fl3l?¿0.

Proof. Let S denote the set, {VA: AG3l}. For the following

discussion we consider a fixed set No in 31. We divide the proof up

into several remarks.

Remark (a). Define S0= \s: sES and sú VA0|. Then, SoCAo.

Proof. Consider any element sES0. If s=VN0 then sENo, since

Ao is complete. Suppose s < VA0. Then associated with s is a member

As of 31 such that s = VA7,. Then since 31 is a nest, either NoEN, or

ASCA0. If NoEN, then clearly, VA0^ VAS = 5, contrary to hypoth-

esis. Hence N,EN0, and since No is complete, VNe = sEN0.
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Remark (b). S is linearly ordered.

Proof. Let s and t be elements of S. Associated with s and t are

sets N, and Nt in 91 such that s= VA, and t=VNt. Either N,ENt

or NtENs. In the former case s^t, in the latter, t^s.

Remark (c). Both S and S0 possess infimums, and AS = ASo.

Proof. By Remark (a), So is contained in a complete subset of L

and hence, So possesses an infimum, A So. Consider any xES. By

Remark (b), we may note that either x^ VN0 or x> V Ao. I f x > V A0

then since VA0GS0, we have that ASoá VA0<x. Clearly if xg VA0,

xESo and hence, hSoéx. We conclude that AS0 is a lower bound for

S. Now suppose that y is any lower bound for S. Then since SoCS,

y is a lower bound for So or, y^ASo. Hence AS0 is the greatest lower

bound for S or, ASo = AS.

We now continue with our proof. N0 is a complete subset of L. By

Remark (a), S0EN0 and hence, ASoGAo. But by Remark (c),

ASo = AS and hence, ASGAo. N0 was chosen as an arbitrary member

of 91 and it was found that ASGA0. Hence ASGfl3l or, Í"l9l?í0.

Theorem 3. Let Q, be a collection of complete subsets of a lattice L

such that ß has the finite intersection property. Then, r\Q,5é0.

Proof. We use transfinite induction on the cardinality of ß. Clearly

the theorem holds if ß is finite. Suppose that the theorem holds if the

cardinality of ß is less than some fixed cardinal number a. Let Y

be the set of all ordinal numbers less than the first ordinal number of

cardinality a. Assume the cardinality of Y is the same as that of ß.

Hence we can index ß with Y. Then for each ordinal «GT we con-

sider the set 4„ in ft to which ra corresponds. Define the set C„

= R {A <: iEY and i^n}. Then C„ is not empty because it is the inter-

section of a collection of complete sets with the finite intersection

property, and this collection has cardinality less than a. Thus the

collection {C„:raGr} forms a nest of nonempty complete subsets

of L. Hence by Lemma 2, n{C„:raGr} =i)a^0.

Theorem 4. Let Lbe a lattice with the complete topology, K(L). Then

L is compact.

Proof. The lattice L with the topology K(L) satisfies the following

property: There exists a subbase of the closed sets for K(L) such that

every subcollection of this subbase with the finite intersection prop-

erty has a nonempty intersection. But this condition is necessary and

sufficient for L with the topology K(L) to be compact. (For a proof

see O. Frink's Topology in lattices.)

Theorem 5. Let Lbe a lattice. Then K(L) EO(L),and I(L) EK(L)

iff L is complete.
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Proof. Clearly every complete subset of A is order closed and

hence, A(L)CO(A). If /(L)CA(A), then since A(L) is compact,

7(A) is compact and hence, A is complete. If on the other hand, A is

complete, each closed ray of the form {x:x^c} or {x:x^c} is com-

plete and hence, /(A) CA(L).

Let A be a complete lattice and A, a nonempty subset of A. Then

by Aq we shall mean the smallest complete subset of A containing A.

If {xa} is a net in A, by {x0j " we shall mean the smallest complete

subset of A containing the range of the net. The following is a char-

acterization of topological convergence in a complete lattice with

respect to the complete topology, A(A).

Theorem 6. Let L be a complete lattice and {xa}, a net in L. Then

\xa\ topologically converges to a point x in L with respect to the com-

plete topology, A(A), iff for each subnet {yc} of {xa}, xE{yc}q.

Proof. Suppose {x„} converges to a point x in L with respect to

the complete topology. Let {yc} be an arbitrary subnet of {x„}.

Then [yc] converges to x. The set {yc}q is closed and contains the

net {yc}- Hence, xG {yc}q.

Now suppose that {xa} does not converge to x. Then there exists

a complete subset C of A such that {x„} is frequently in C and

xEC. Hence there exists a subnet {zb} of {xa} contained in C. There-

fore {zb}q is contained in C. Hence x G {%}q.

Corollary 7. Let {xa} be a net in a complete lattice L. Then the

set of all elements in L to which {xa} converges with respect to A (A) is

a complete subset of L.

Corollary 8. Let L be a complete lattice and {xa}, a net in L. Then

if {xa} topologically converges to a point x in L with respect to the com-

plete topology, A(A), A*{x0} =x^A*{xa}.

Proof. We first note that for A, a nonempty subset of A, \IA

= VAq, and l\A=l\Aq.
For any element a of the directed set of {x0}, xG |x&: b^a}q.

Hence, for any a, A&sox¡,:Sx. Therefore, Vahbäa X6 = A*{x„} =x.

Dually, x = A*{x0).

Theorem 9. Let Lbe a complete lattice and TiL), any compact topol-

ogy for L. Then if every complete subset of L is closed with respect to the

topology TiL), r(L) is contained in the order topology, OiL).

Proof. If every complete subset of L is closed with respect to the

topology TiL), we have that A(A)CF(A). Hence, topological con-

vergence with respect to A(A) implies topological convergence with

respect to A(A). Therefore by the previous corollary, if {x„} is a net

in A and {x0} converges to a point x with respect to the topology
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T(L),L*{xa}èx^L*{xa}.

Now let C be any subset of L such that C is not closed with respect

to O(L). Then there exists a net, {xa} in C which order converges to

a point x, not in C. But since L is compact with respect to T(L),

there exists a subnet {yb} of {x„} and an element y in L such that

{y¡,} topologically converges to y with respect to T(L). Hence,

L*{xa}ûL*{yb}èyuL*{yb}èL*{xa}. But L*{xa} =£*{x0} =x.

Hence, x = y. Therefore, yGC. Thus there exists a net in C which

converges to a point, y, outside of C. Therefore C is not closed in the

T(L) topology. Therefore, T(L)CO(L).

Theorem 10. Let L be any lattice which satisfies the following condi-

tion: If {xa} is a net in L which topologically converges to a point x

with respect to the order topology, then there exists a subnet of {xa}

which order converges to x.

Then if L is compact with respect to its order topology, 0(L), it fol-

lows that 0(L)=K(L).

Proof. Suppose that L satisfies the above condition and suppose

further that L is compact with respect to 0(L). Then since I(L)

EO(L), I(L) is compact and therefore, L is complete.

Let C be a subset of L such that C is not closed with respect to

K(L). Then there exists a net {x0} in C and a point xEC such that

{x0} converges to x with respect to the topology K(L). Since L is

compact with respect to O(L), there exists a subnet {yb} of {x„} and

a point y in L such that {yb} topologically converges to y with re-

spect to the order topology. By hypothesis, there exists a subnet jzJ

of {yb}, and hence of {x„}, which order converges to y. The net {zc}

topologically converges to x with respect to K(L). Hence by Corol-

lary 8, L*{zc} èx^L*{zc}. However, L*{zc} =L*{zc} =y. There-

fore, x = y. Hence, y EC. We conclude that C is not closed in the

order topology for L. Hence, 0(L)EK(L). But K(L)EO(L). Hence

the theorem follows.

For any lattice L it can be shown that if L is Hausdorff with re-

spect to the complete topology for L then L is a complete lattice. The

following questions remain unanswered :

1. Does Theorem 10 hold for arbitrary lattices?

2. For any lattice L, is a necessary and sufficient condition for

O(L) to be compact that K(L) be Hausdorff?
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