A COMPACT TOPOLOGY FOR A LATTICE1

ARNOLD J. INSEL

Introduction. In this paper we shall study a compact intrinsic topology for a lattice and obtain a few relationships between this topology and certain well-known intrinsic topologies for lattices. We obtain as a result the fact that for a large class of lattices, compactness of the order topology implies that our compact topology and the order topology coincide.

Let L be a lattice and $\{x_a\}$, a net in L. We define the limit inferior, $L_*\{x_a\} = \bigvee_a \bigwedge_{b \geq a} x_b$, and the limit superior, $L^*\{x_a\} = \bigwedge_a \bigvee_{b \geq a} x_b$. Then, provided they exist, $L_*\{x_a\} \leq L^*\{x_a\}$. If $L_*\{x_a\} = L^*\{x_a\} = x$, we say that the net $\{x_a\}$ order converges to x. Let C be a subset of L. C is said to be order closed iff no net in C order converges to a point outside of C. The collection of order closed sets comprises the closed sets for a topology for L. We call this topology the order topology for L and designate it by O(L).

The collection of sets of the form $\{x: x \le c\}$ and $\{x: x \ge c\}$ for $c \in L$ forms the sub-base of the closed sets of a weaker topology called the interval topology and designated by I(L). It is known that for any lattice L, L is complete iff L with the interval topology is compact. (See G. Birkhoff's *Lattice theory*.)

The complete topology. Definition 1. Let L be a lattice and \mathfrak{C} , the collection of all complete subsets of L. Then \mathfrak{C} is a subbase of the closed sets for a topology which we shall denote by K(L). The topology K(L) will be called the *complete topology* for L.

LEMMA 2. Let L be a lattice and \mathfrak{A} , a nest of nonempty complete subsets of L. Then $\Omega\mathfrak{A}\neq\emptyset$.

PROOF. Let S denote the set, $\{VN: N \in \mathfrak{N}\}$. For the following discussion we consider a fixed set N_0 in \mathfrak{N} . We divide the proof up into several remarks.

REMARK (a). Define $S_0 = \{s: s \in S \text{ and } s \leq \forall N_0\}$. Then, $S_0 \subset N_0$.

PROOF. Consider any element $s \in S_0$. If $s = VN_0$ then $s \in N_0$, since N_0 is complete. Suppose $s < VN_0$. Then associated with s is a member N_s of \mathfrak{A} such that $s = VN_s$. Then since \mathfrak{A} is a nest, either $N_0 \subset N_s$ or $N_s \subset N_0$. If $N_0 \subset N_s$ then clearly, $VN_0 \leq VN_s = s$, contrary to hypothesis. Hence $N_s \subset N_0$, and since N_0 is complete, $VN_s = s \in N_0$.

Received by the editors April 2, 1962.

¹ The author wishes to express his appreciation to Professor T. O. Moore under whose direction this research was done.

REMARK (b). S is linearly ordered.

PROOF. Let s and t be elements of S. Associated with s and t are sets N_s and N_t in \mathfrak{N} such that $s = \forall N_s$ and $t = \forall N_t$. Either $N_s \subset N_t$ or $N_t \subset N_s$. In the former case $s \leq t$, in the latter, $t \leq s$.

REMARK (c). Both S and S_0 possess infimums, and $\Lambda S = \Lambda S_0$.

PROOF. By Remark (a), S_0 is contained in a complete subset of L and hence, S_0 possesses an infimum, ΛS_0 . Consider any $x \in S$. By Remark (b), we may note that either $x \leq VN_0$ or $x > VN_0$. If $x > VN_0$ then since $VN_0 \in S_0$, we have that $\Lambda S_0 \leq VN_0 < x$. Clearly if $x \leq VN_0$, $x \in S_0$ and hence, $\Lambda S_0 \leq x$. We conclude that ΛS_0 is a lower bound for S. Now suppose that S_0 is any lower bound for S_0 . Then since $S_0 \subset S_0$ is a lower bound for S_0 or, $S_0 = \Lambda S_0$. Hence $S_0 \subset S_0$ is the greatest lower bound for $S_0 \subset S_0$ or, $S_0 = \Lambda S_0$.

We now continue with our proof. N_0 is a complete subset of L. By Remark (a), $S_0 \subset N_0$ and hence, $\Lambda S_0 \in N_0$. But by Remark (c), $\Lambda S_0 = \Lambda S$ and hence, $\Lambda S \in N_0$. N_0 was chosen as an arbitrary member of \mathfrak{A} and it was found that $\Lambda S \in N_0$. Hence $\Lambda S \in \mathfrak{N} \mathfrak{A}$ or, $\mathfrak{N} \mathfrak{A} \neq \emptyset$.

THEOREM 3. Let α be a collection of complete subsets of a lattice L such that α has the finite intersection property. Then, $\bigcap \alpha \neq \emptyset$.

PROOF. We use transfinite induction on the cardinality of α . Clearly the theorem holds if α is finite. Suppose that the theorem holds if the cardinality of α is less than some fixed cardinal number α . Let Γ be the set of all ordinal numbers less than the first ordinal number of cardinality α . Assume the cardinality of Γ is the same as that of α . Hence we can index α with Γ . Then for each ordinal $n \in \Gamma$ we consider the set A_n in α to which n corresponds. Define the set $C_n = \bigcap \{A_i : i \in \Gamma \text{ and } i \leq n\}$. Then C_n is not empty because it is the intersection of a collection of complete sets with the finite intersection property, and this collection has cardinality less than α . Thus the collection $\{C_n : n \in \Gamma\}$ forms a nest of nonempty complete subsets of L. Hence by Lemma 2, $\bigcap \{C_n : n \in \Gamma\} = \bigcap \alpha \neq \emptyset$.

THEOREM 4. Let L be a lattice with the complete topology, K(L). Then L is compact.

PROOF. The lattice L with the topology K(L) satisfies the following property: There exists a subbase of the closed sets for K(L) such that every subcollection of this subbase with the finite intersection property has a nonempty intersection. But this condition is necessary and sufficient for L with the topology K(L) to be compact. (For a proof see O. Frink's *Topology in lattices*.)

THEOREM 5. Let L be a lattice. Then $K(L) \subset O(L)$, and $I(L) \subset K(L)$ iff L is complete.

PROOF. Clearly every complete subset of L is order closed and hence, $K(L) \subset O(L)$. If $I(L) \subset K(L)$, then since K(L) is compact, I(L) is compact and hence, L is complete. If on the other hand, L is complete, each closed ray of the form $\{x: x \leq c\}$ or $\{x: x \geq c\}$ is complete and hence, $I(L) \subset K(L)$.

Let L be a complete lattice and A, a nonempty subset of L. Then by A^q we shall mean the smallest complete subset of L containing A. If $\{x_a\}$ is a net in L, by $\{x_a\}^q$ we shall mean the smallest complete subset of L containing the range of the net. The following is a characterization of topological convergence in a complete lattice with respect to the complete topology, K(L).

THEOREM 6. Let L be a complete lattice and $\{x_a\}$, a net in L. Then $\{x_a\}$ topologically converges to a point x in L with respect to the complete topology, K(L), iff for each subnet $\{y_c\}$ of $\{x_a\}$, $x \in \{y_c\}^q$.

PROOF. Suppose $\{x_a\}$ converges to a point x in L with respect to the complete topology. Let $\{y_c\}$ be an arbitrary subnet of $\{x_a\}$. Then $\{y_c\}$ converges to x. The set $\{y_c\}^q$ is closed and contains the net $\{y_c\}$. Hence, $x \in \{y_c\}^q$.

Now suppose that $\{x_a\}$ does not converge to x. Then there exists a complete subset C of L such that $\{x_a\}$ is frequently in C and $x \in C$. Hence there exists a subnet $\{z_b\}$ of $\{x_a\}$ contained in C. Therefore $\{z_b\}^q$ is contained in C. Hence $x \in \{z_b\}^q$.

COROLLARY 7. Let $\{x_a\}$ be a net in a complete lattice L. Then the set of all elements in L to which $\{x_a\}$ converges with respect to K(L) is a complete subset of L.

COROLLARY 8. Let L be a complete lattice and $\{x_a\}$, a net in L. Then if $\{x_a\}$ topologically converges to a point x in L with respect to the complete topology, K(L), $L_*\{x_a\} \le x \le L^*\{x_a\}$.

PROOF. We first note that for A, a nonempty subset of L, $\forall A = \forall A^q$, and $A = A^q$.

For any element a of the directed set of $\{x_a\}$, $x \in \{x_b : b \ge a\}^q$. Hence, for any a, $\bigwedge_{b \ge a} x_b \le x$. Therefore, $\bigvee_a \bigwedge_{b \ge a} x_b = L_* \{x_a\} \le x$. Dually, $x \le L^* \{x_a\}$.

THEOREM 9. Let L be a complete lattice and T(L), any compact topology for L. Then if every complete subset of L is closed with respect to the topology T(L), T(L) is contained in the order topology, O(L).

PROOF. If every complete subset of L is closed with respect to the topology T(L), we have that $K(L) \subset T(L)$. Hence, topological convergence with respect to T(L) implies topological convergence with respect to K(L). Therefore by the previous corollary, if $\{x_a\}$ is a net in L and $\{x_a\}$ converges to a point x with respect to the topology

 $T(L), L_*\{x_a\} \leq x \leq L^*\{x_a\}.$

Now let C be any subset of L such that C is not closed with respect to O(L). Then there exists a net, $\{x_a\}$ in C which order converges to a point x, not in C. But since L is compact with respect to T(L), there exists a subnet $\{y_b\}$ of $\{x_a\}$ and an element y in L such that $\{y_b\}$ topologically converges to y with respect to T(L). Hence, $L_*\{x_a\} \le L_*\{y_b\} \le y \le L^*\{y_b\} \le L^*\{x_a\}$. But $L_*\{x_a\} = L^*\{x_a\} = x$. Hence, x = y. Therefore, $y \notin C$. Thus there exists a net in C which converges to a point, y, outside of C. Therefore C is not closed in the T(L) topology. Therefore, $T(L) \subset O(L)$.

THEOREM 10. Let L be any lattice which satisfies the following condition: If $\{x_a\}$ is a net in L which topologically converges to a point x with respect to the order topology, then there exists a subnet of $\{x_a\}$ which order converges to x.

Then if L is compact with respect to its order topology, O(L), it follows that O(L) = K(L).

PROOF. Suppose that L satisfies the above condition and suppose further that L is compact with respect to O(L). Then since I(L) $\subset O(L)$, I(L) is compact and therefore, L is complete.

Let C be a subset of L such that C is not closed with respect to K(L). Then there exists a net $\{x_a\}$ in C and a point $x \notin C$ such that $\{x_a\}$ converges to x with respect to the topology K(L). Since L is compact with respect to O(L), there exists a subnet $\{y_b\}$ of $\{x_a\}$ and a point y in L such that $\{y_b\}$ topologically converges to y with respect to the order topology. By hypothesis, there exists a subnet $\{z_c\}$ of $\{y_b\}$, and hence of $\{x_a\}$, which order converges to y. The net $\{z_c\}$ topologically converges to x with respect to K(L). Hence by Corollary $\{x_c\}$ and $\{x_c\}$ is $\{x_c\}$. However, $\{x_c\}$ is not closed in the order topology for $\{x_c\}$. We conclude that $\{x_c\}$ is not closed in the order topology for $\{x_c\}$. Hence, $\{x_c\}$ but $\{x_c\}$ but $\{x_c\}$ hence theorem follows.

For any lattice L it can be shown that if L is Hausdorff with respect to the complete topology for L then L is a complete lattice. The following questions remain unanswered:

- 1. Does Theorem 10 hold for arbitrary lattices?
- 2. For any lattice L, is a necessary and sufficient condition for O(L) to be compact that K(L) be Hausdorff?

BIBLIOGRAPHY

- 1. Garrett Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ. Vol. 25, Amer. Math. Soc., Providence, R. I., 1948.
 - 2. O. Frink, Topology in lattices, Trans. Amer. Math. Soc. 51 (1942), 569-582.
 - 3. B. C. Rennie, Theory of lattices, Foester and Jagg, Cambridge, 1951.

University of Florida