
RAPIDLY INCREASING KERNELS

HAROLD WIDOM

In this note we determine the asymptotic form as t—>oo of the

largest eigenvalue and corresponding eigenfunction of a positive sym-

metric kernel kix, y) on (0, t) under the assumption that kix, y) in-

creases regularly and rapidly as x, y—» oo. Roughly speaking it is re-

quired that k(x, y) grow more rapidly than every polynomial. The

point is that k(x, y) is in an appropriate sense close to k(x, x)1 l2k(y, y)112

(see Lemma 3), a kernel with the single nonzero eigenvalue f'0k(x, x)dx

and corresponding eigenfunction k(x, x)1'2.

As corollaries we obtain the behavior of the largest eigenvalues and

corresponding eigenfunctions of k(x-\-y) on (0, /) and &(|x— y\) on

( — t, t) where k is a rapidly increasing function of one variable.

Theorem. Assume y(x, y) = log k(x, y) is real and symmetric, be-

longs to C2, and satisfies

CO 7v = 0,
(ii) lim«,8<00 yyv(x, y) = » ,

(iii) yvy = o(yl) and yyx = o(yyyx) as x, y—>oo.

Then the largest eigenvalue of k(x,y) on (0,t) is asymptotic to k(t,Í)2 /k' (t,t)

as i—> oo. The eigenvalue is simple and its corresponding eigenfunction

is asymptotic to k(x, x)112. All other eigenvalues are o(k(t, t)2/k'(t, t)).

Two points require explanation. We use the notation

d
k'(t,t) = — k(t, t).

dt

The statement that the eigenfunction is asymptotic to k(x, x)1/2

means that if the normalized eigenfunction be called / and the func-

tion k(x, x)1/2, normalized, be called <p, then f'0\f(x) — <j>(x) \2dx—*0 as

t-*<*>.

Lemma 1. Let g(x, y) satisfy the conditions (i)-(iii). Then as x, t—>oo

we have

/> t                                     gB(x,t)
e0(x,v)¿y ^ -   .

o                          gvix, t)

Proof. Let M be so large that g„(x, y) >0 for x, y^M. Then

e°(*.v)dy = —-+        s      '-" e'^^dy.
m gvi*,t)      gÁ*,M)      JMgvix,y)2
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It follows from (iii) that if x and M are sufficiently large the integral

on the right side of (1) has absolute value at most

/eg(x,
M

V)dy.

The rest of the right side of (1) is "7
ßöix.t)    [~ gg(x,M) i   ggix,t)  ~

l-
gy(x,   M)    I       gy(x,   t)\gyiX,   t)

The logarithm of the quotient inside the bracket is, by the mean

value theorem,

[■
-it- M)\gyix,M + eit-M)) -

gyyjX,   M   +   djt-    M))

gyix, M + dit- M)) J

for some 6 in (0, 1). By (iii) this will be less than

--it - M)gyix, M + dit-M))

if x and M are sufficiently large, and then by (ii) this will be less than

log € if t>2M. It follows that if x and M are sufficiently large and

t>2M then
J   _   e /» i /   gS(-Cf) \

- g   I    es(x'y)dy /-^- •
1   +  «        J M I     gyix, t) 1   -   €

But for fixed M,

/mi                   M f          _.               Mfea(x,y)¿y   —   -   I eg(x,t    My)¿y  ^ -   I      ea(x,y)¿y

o t  J o t  J 0

by (i). Thus

/."-•CO
and the result follows.

Lemma 2. Let g(x, y) be symmetric and satisfy the conditions (i)-(iii).

Then as t—> » we have

j      e0(.x,y

0   " 0

)dydx ■
ï'H, t)2

Proof. By Lemma 1 we can find an M so that x, t «£ M imply

/.

I gi(x,t)

eg(x,v)¿y ^ (1 - e) -
gyix, t)
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Then we have

ee(x,t)

y\X,  t)

eg(t,t) eg(M,t)

dx I    e0(-x'y)dy ¡> (1 — é) I    -dx
0 J 0 J M gyix, t)

(2) = (1 - e) r--
Uxit,  t)gy(t,  t) gx(M,  t)gy(M,  t)

J m \dx gx(x, t)gy(X, t))

It follows from (iii) and the symmetry of g that if M is sufficiently

large the integral on the right side of (2) has absolute value at most

efMeaix,t)/gvix> t)dx. The logarithm of the quotient of the remaining

two terms inside the bracket in (2) is, by the mean value theorem,

r gxxiM + dit - M),t)
-it-M) gx(M + 8(t -M),t)- g;M^ñ:t   M'

L gx(M + 6(t - M),t)

gyx(M + e(t-M),t)l

gy(M + d(t-M),t)\'

It follows from (ii) and (iii) and the symmetry of g that this is less

than log e if M is sufficiently large and t>2M. Then we have, since

gx(t,t)=gy(t,t)=y(t,t),

4eo(t,t)       (i _ €)2

(3) I   eoix'y)dydx /-> —
MJo I  g'it,t)2        1 + e

Therefore

' 4g«(i.i)

(4) j    e"<x'v)dydx /->
o-^o / g'it,ty-

The proof of the opposite inequality with the lim sup is similar. To

pass from the analogue of (3) to the analogue of (4) one uses the fact

that for fixed M,

n:-(m
as at the end of the proof of Lemma 1.

Lemma 3. As /—>oo,

f    f  [k(x,y) - k(x,xyi2k(y,yyi2]2dydx = o(( f k(x,x)dx\j-
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Proof. If we expand the left side we see that it suffices to show

I     I   kix, y)2dydx ~ f   I   k(x, x)dx) ,

I     I   ä(x, y)k(x, xy'2kiy, yyi2dydx~( f k(x, x)dx\ .

But it follows from Lemma 1 with g(x, y) = y(y, y) that

/' t eyU,t)
k(y, y)dy ~ ——- ,

o 7 (t, t)

it follows from Lemma 2 with g(x, y) =27(x, y) that

gSrO.O

/£(x, y)2dydx
o  J 0 y'it,t)2

and it follows from Lemma 2 with g(x, y) =y(x, y) +%y(x, x) +\y(y, y)

that

f ' ftk(x,y)k(x,xyi2k(y,yyi2dydx~-Ç^-- •
■/o ■'o 7 (í, O2

To deduce the theorem from Lemma 3 we need what is essentially

a perturbation theorem, although none of those in the literature

seems to apply directly. However the reader will recognize the follow-

ing lemma as being the basis of one of the standard perturbation

theorems.

Lemma 4. Let A and B be bounded self-adjoint operators with spectral

families Ea. and Eb respectively. Let I be an interval of length L, A the

distance from the end-points of I to the spectrum of B, and 8 = ||.<4 — B\\.

Then if § <A we have

m n 37,
\\EA(I) - EB(I)\\ ^

2A(A - 5)

Proof. Let C be the circle, described in the positive direction, with

diameter 7. Then

EA(I) - EB(I) - —- f [(A - X)-1 - (B - \)-*]d\
2wiJ c

= —; ( (A - \)~\B - A)(B - X)-»d\.
27TÎ J a
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and the integral is estimated in the obvious way using the given in-

formation.

We now prove the theorem. Let A be the integral operator on

L2(0, t) with kernel k(x, y) and B the operator with kernel

*(*, x)l'2k(y, y)1'2. From (5),

11   11       f                    Wifl1
\\B\\ =  I   k(x, x)dx ~-•
"   "      Jo k'it,t)

It follows from Lemma 3 that \\A — B\\ = o(||.ß||) as i—>oo. Let I be

the interval of length e||5|| with mid-point ||J3||. Since ||j3||—»00 it

follows from Lemma 4 that

\\EA(D-EB(D\\-+o.

Since EB(I) is the projection onto the subspace spanned by k(x, x)1/2

and since e>0 is arbitrarily small the first two statements of the

theorem are established. Let I' be the interval (e||.B||, (1—e)||5||).

Then EB(I') — 0 and it follows that for sufficiently large / we have

Ea(I') =0, so that every eigenvalue of A other than the largest must

be ^e||5||. Similarly every such eigenvalue must be ^ —e||5||.

Corollary 1. Let k(x)=e^x\ x^O, where y is real, belongs to C2,

and satisfies

(i) T'^0,
(ii) linis.*, xy'(x) = oo,

(iii) y"(x)=o(y'2) asx—>oo.

Then the largest eigenvalue of k(x + y)  on  (0, t) is asymptotic to

k(2t)2/2k'(2t) as ¿—>oo. The eigenvalue is simple and its corresponding

eigenfunction  is  asymptotic  to  k(2x)112.   All  other  eigenvalues  are

o(k(2t)2/k'(2t)).

Corollary 2. Let k be as in Corollary 1. Then the kernel k(\x—y\)

on ( — t, t) has eigenvalues asymptotic to ±k(2t)2/2k'(2t) as t—»oo.

These eigenvalues are simple and have corresponding eigen]'unctions

asymptotic to &(2|x|)1/2 and sgn x &(2|x|)1/2 respectively. All other

eigenvalues are o(k(2t)2/k'(2t)).

Proof. Let C be the integral operator on L2(0, t) with kernel

k(x+y), D the operator on L2(0, /) with kernel &(|x — y\) and U the

mapping from L2(0, t) to L2( — t, 0) given by Uf(x) =/(—*). Then the

operator on L2( — t, t) with kernel k(\ x — y\ ) is given in the usual way

by the matrix
r D       CU* 1

(6)
LUC    UDU*.
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It follows from Corollary 1 that

r 0     CU*1

m lue    o\
has the properties stated in Corollary 2. If we can show that ||P||

= o(||C||) we could then apply Lemma 4, with A given by (6) and B

given by (7). Now it is a consequence of Lemma 3 and (5) not only

that ||C||~ki2t)2/2k'i2t) but also that |||C|||~ä(2072*'(2i), where
| II) denotes Hilbert-Schmidt norm. Thus it suffices to show |||i>|||

= o([||C|||). But

/> t    /» t /• t /» x

I    K\x-y\ )Hydx =21   dx I   kiy)2dy
o J o J o       J a

and

/► t    /» t /» t /» 2x

I   kix + y)2dydx = 2 j   dx I     kiy)2dy.
0   J 0 J 0       'J x

Since yi2y)—yiy)=yy'iil+Q)y)-*tt as y—>» by (ii), we have kiy)

= oiki2y)) and so

fXkiy)2dy = o(f Xkiy)2dy\

This proves |||7?|||=0(|||C|||).

Finally we remark upon the conditions we have imposed and

growth conditions. In Corollary 1, if 7 is nondecreasing and lim7"/7'2

exists, finitely or infinitely, then it is easy to show that (ii) implies

y(x)
-» 00

logx

and that (ii) and (iii) are implied by

y(x)

logx
Î

Thus our requirement is roughly that 7(x) increases more rapidly

than log x. This is the correct condition. For if y(x)=a log x with a

a constant then k(2t)2/2k'(2t) =0r12ata+1 while the Hilbert-Schmidt

norm of k(x+y) is ta+1 times a constant smaller than orx2a.
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