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1. Introduction. Let B(z) be the infinite Blaschke product:

+00

eiX zm   II 5»(»» - z)/ I an | (1 - ä„z),
n-1

where X is a real constant, and m is a non-negative integer, 0 < | an\

< I> £¡"-1 (1 — | on | ) < + » • The object of this note is to establish the

following two theorems.

Theorem 1. (A) If the subsequence {ank} tends to z = e^ within the

Stolz domain in such a manner that

lim   | iank - ank+1) |/ \ ank - e!* |   = 0,

then the angular limit at e** of Biz) is 0.

(B) If the subsequence {ank} tends to z = e** within the circle:

| z — ae*| ^ 1 — a (0 <a < 1), in such a manner that

2     i ,

lim   l/x* • | ank — ank+l \   = 0,

where Xi = min{ |o„t —e**|, |öni+1 — e**| }, then the angular limit at e**

of Biz) isO.

As an application of Theorem 1 (A), we prove

Theorem 2. There exists a meromorphic function /(z) of bounded

characteristic in \ z \ < 1 represented by the quotient of two infinite

Blaschke products such that

(1) /(z) has infinite number of zeros and poles on arg(l— z)= —â

and arg(l — z) — +t? respectively (0 <t? <tt/2).

(2) lim fz) = 0,        and lim fz) = ».
z->l;arg(l-z) = -0 z->l ; arg (l - z) = +tf

Remark. (1) O. Frostman [l, p. 109] was the first to construct an

example of Blaschke product with the boundary value 0, i.e.,

+CO

B(z) = II {(1 - V»2) - 3J/{1 - (1 - l/w2)z},   where  lim B(r) = 0.
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(2) By the well-known Iversen-Lindelöf theorem on asymptotic

values, f(z) of Theorem 2 has Picard 's property in the sector

5: |arg(l—z)| ;£#<7r/2; w=f(z) takes every value w, except perhaps

two, infinitely many times in 5. On the other hand, f(eiB) is of modu-

lus one almost everywhere on \z\ = 1.

(3) D. A. Storvick [3, p. 37] constructed a meromorphic function

f(z) defined by the quotient of two infinite Blaschke products such

that /(z)—>0 and oo as z—>1 along the upper and lower oricycle:

r = cos 6 respectively, z = reie.

2. Proof of Theorem 1. (A) We decompose B(z) as follows:

B(z) = Bx(z)-B2(z),

where Bx(z) = IL+-°Î ärik(ank-z)/\ank\ (l-ä„kz), B2(z)=B(z)/Bx(z).

Since | P(z) | < | Si(z) | for \z\ <1, it is sufficient to prove that the

angular limit at e* of Pi(z) is 0.

Without any loss of generality, we can assume that 0 = 0. Put

z=l— re*6, a„k = bk = l—rkeidk. By a simple calculation,

(2 1)    ih ~ Z)/(1 ~ b"Z)

= (bk - z)/rke-^-{ (e™* + 1) - reu + (h - z)/rkei<>*-ei2<l'°}-1.

Let us denote by lk the segment connecting two points bk and bk+i.

If z lies on lk, we have evidently

(2.2) \bk — z\   S  \bk — bk+x\ ,        r g max(rt, r*+i).

By \dk\ ^t?<7r/2, we get easily

(2.3) | ei29"+ l|   > sinO).1

By (2.1), (2.2) and (2.3)

| (bk - z)/(l - M |   g  | (bk - bk+1) | /| 1 - h\

•{sin(2#) - max(rt, rk+1) -  \ (h - bk+x) \/\l- bk\}~1,

so that, by the assumptions:

lim  | (bk — bk+x) | / | 1 - bk |   = 0, lim max(rk, rk+1) = 0,
*->0O ifc-»00

we obtain

(2.4) lim (bk - z)/(l - lkz) = 0,
t-,00

where z£4. Since

1 |e<M*+l| =2cose*e2cos£í>sin(2v).
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| Bi(z) |   <  | (bk - z)/(l - hkz) I for any k and | z |   < 1,

by (2.4)
lim Bi(z) = 0,

as z—>1 along C = \lk lk. Hence, by Lindelöf's theorem [2, p. 5]

lim A,(z) = 0,
z->l

as z—>1 inside a Stolz domain with vertex at z = 1, as was to be proved.

(B) Using the same notations as above, we get

(2.5) (bk - z)/(l - hkz) = (bk - z)/rrke^-^-{e^/rk + e~is/r - l}"1.

In the circle: \z — a\ ^1— a (0<a<l, s=l— re*), we have

1
(2.6) -<cos0/r.

2(1 - a) - '

If z lies on lk, by (2.5) and (2.6),

| (bk - z)/(l - bkz) |   ^  | ih - z) | /rrk- {cos Bk/rk + cos 6/r - l}~1

g il/a - l)-yk/immir)-xk),

where  yk=\bk — bk+i\, xk = m'mirk,  rk+ï),  min(r) =min26ít|z—1|.   If

min(r) =xk, we have

| ibk - z)/(l - lkz) |   è (l/a - l)-yk/xl.

If min(r) <xk, we have easily

2 2   1/2
min(r) è (xk - (yk/2) )    ,

so that

| (bk - z)/(l - M |   g (í/a - l)-yk/x¡-{ 1 - (y^s*)2}"1'2.

In any case, by the assumption: limt^ y,t/xt = 0, we have

lim (i* - z)/(l - M = 0,
fc—* «

as z on /fc. Hence, by entirely similar arguments as in (A),

lim B(z) = 0,
Z-.1

as z—>1 inside the Stolz domain with vertex at z= 1.

3. Lemmas. To prove Theorem 2, we need two lemmas.

Lemma 1. Put
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w(z) = (ez — z)(l — az)/(l — âz)(â — z),

where \a\ <1, 7(a) >0.2 Then

I wiz)\   < 1       for I z\   < I, 7(z) > 0.

Proof. w(z) is regular in the upper semi-circle D: \z\ ¿I, 7(z) S;0.

On the boundary of D, we have evidently \w\ =1. Hence, by the

maximum-modulus principle, |w(z)| <1 for \z\ <1, 7(z)>0.

Lemma 2. In the domain D: \z\ <l, 7(z) ^0, \z —1\ á |a —1[, where

\a\ < 1, 7(a)>0, we have

I (1 - az)/iz - a) I   < exp(2/sin2 Û),

where arg(l-a) = -ê (0<t?<7r/2).

Proof. By the inequality: log(l+x)^x for x^O, for \a\ <1,

I z I ̂  1 we obtain

log I (1 - az)/iz - a) I  =-logfH-(1- | a|2)(l - | z|2)/ | (z - à) \2}

â-(l- \a\2)il- |z|2)/|(z-a)|2

<2| (1 -a)(l - z)\/\ (z-ö)l2.

Hence

log I (1 - az)/iz - a) I   < 2 | 1 - a|2/| 7(a) |2 = 2/sin2»?     íoxzE D,

because   \z — l|^|o—1|,   \z— â| jâ 7(a)   in  D.  Thus  Lemma 2  is

proved.

4. Proof of Theorem 2. Let the sequence {e„} be such that

cos ê > ei > e2 > •■•>€„>—> 0,

(4.1) £e„<+»,

lim   tn+l/tn   =   F
n—. »

Putein=l-en-e-i'' (0<i?<7t/2). Then

I an\   < 1,       Iian) > 0       for re ̂  1.

The desired function/(z) is given by/(z) =Ai(z)/7J2(z), where

21(a) is the imaginary part of a.



476 CHUJI TANAKA

+00

Bx(z) = II än(on - z)/ k I (1 - änz),
lt-1

+00

Biiz) = IT aniân - z)/\ fl„| (1 - a„z).
n-l

Since £^,"1 1 — I an\ < £í_"i 11 — o„| = £^="1 e„ < + 00, the Blaschke

products Biiz) (t=l, 2) are convergent.

We can put

+00

fiz) " II an/an-ian - z)(l - a„z)/(l - öBz)(ä„ - z),
n-l

so that, by Lemmas 1 and 2, we have

(4.2) \f(z) I   < I (ak - z)/(l - äkz) I • exp(2/sin2#)

on the segment: arg(l—z)= — ê, 11—z| ^e*. By (4.1)

I (ak — ak+1)/(l — ak)\   = 1 — ek+1/ek -> 0        as k —» + 00 .

Hence, by (4.2) and arguments similar to those in the proof of Theo-

rem 1 (A),

lim f(z) = 0.
i->l;arg(l-î) = -tf

Similarly

lim l//(z) = 0.
i->l;arg(l-í) = +í

Thus Theorem 2 is completely established.
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