
ON THE VALUE OF DETERMINANTS

JOHN H. E. COHN

The following problems were suggested, in the January 1962 issue

of the Bulletin:

What are the maximum values of nth order determinants subject to

the conditions

(a) each element, a„ = Oor 1,

(b) each element, eïra= — 1 or 1,

(c) each element, ezrs= —1, 0 or 1?

We shall not solve these problems completely, but we shall show that

the three problems are equivalent and obtain the values approxi-

mately for large n.

Notation. Define fin), gin), hin) to be the maximum values of

wth order determinants with elements subject to (a), (b), and (c)

respectively and let Fn, G„, Hn be the matrices satisfying the condi-

tions whose determinants have values fin), gin) and hin). Of course

these matrices are not unique.

Preliminaries.

Theorem 1. gin) = hin) for each n.

Certainly, since the class of matrices with elements —1, 0 or 1

contains the class with elements —1 or 1 therefore, hin) ^g(w).

Secondly, consider Hn. If Hn has no zero element then clearly

gin) =hin). If Hn has at least one zero element, suppose ars — 0. Then

consider the expansion by the rth row of hin), hin) = aTiAri+ar2Ar2

+ ■ ■ • +aTnATn. If ^4rs>0, we could increase hin) by replacing ar,

by 1. If ^4r.<0 we could increase hin) by replacing ar, by —1. If

A„ = 0 we could replace aT, by 1 without altering hin). Hence we

may in turn replace each zero element of Hn without decreasing hin).

Hence gin) ^Ä(re), and so

gin) = h{n).

Theorem 2. g(re) = 2n_1/(w — I), for each n.

Consider Gn= iars) (ar«= ±1). If auj^-l, ait = —1 and in this case,

by multiplying each element in the 5th column by — 1 we obtain

1    1  • • ■ 1

br.
gin) = ± ±1,        r > 2.
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Similarly we can do the same for each element in the first column and

obtain

1    1 • • • 1

1

1gin) = ±

1

cn = ± 1,   r, s â 2.

Therefore, interchanging the second and third rows if the sign outside

is minus we obtain

gin) drs = ± 1,   r, s à 2.

1    1 • • • 1

1

d„

i

Now subtract the first row from each of the others and we obtain

1    1 • • • 1

0

0    d„-lgin) =

0

But if d„= — 1 or 1, then dr, —1=0 or —2. Hence, expanding by

the first column we obtain

gin) = (-2)"-1! er,|(„_i)    where    eT, = 0 or 1.

Hence gin) ^2"-1/(w-l).

Conversely,

2-1/(W-l) = 2»-1|ar.|n_1

=  I 2ar, \n-x

0

0

0

ar. = 0 or 1

2a,

■1  -1 • • • -1    1

2a„ — 1

-1
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adding the last row to each of the others. But if ar, = 0 or 1, then

2a„ - 1 = 1 or -1    hence    2"-I/(w - 1) <j g(n).

This concludes the proof, and shows incidentally that g(n) is always

a multiple of 2n_1.

This shows that the three problems are equivalent and so we shall

concentrate on the second from now on.

We now prove the following results.

Theorem 3. g(n) è(w — 2)2n_1.

For g(n) is not less than the circulant

1 1 • • •      1-1

1 1 • • •      1      1

1 -1 . . .      1      1

i.-1      1

Theorem 4. g(» + l) ^2g(w).

For clearly/(ra) ^f(n — 1) and so by Theorem 2, the result follows.

Theorem 5. g(n) In"'2.

This is an immediate corollary of Hadamard's inequality.

Theorem 6. g(l) = 1 ; g(2) = 2.

The first of these is trivial. For the second we observe that

1    1

-1    1f(2)è = 2

and g(2) g 2, by Theorem 5.

Theorem 7. For each n, g(2») è2n[g(n)]2.

Consider the 2nX2» matrix

/Gn      -Gn\

\Gn GJ'

In this each element is 1 or

Hence

f (2») ^
Gn      —Gn

Gn Gn

2Gn

Gn

0

Gn
, = \2Gn\ ■|G.| = 2"k(f»)]*.
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Theorem 8. If n = 2m, gin)=nnl2.

By Theorem 5, g(n)ènn,i, and we prove by induction that gin)

(a) We know that g (2) = 2.

(b) Suppose that result is true for n — 2mo.

Then, by Theorem 7

g(2n) ^ 2"[g(n)]2

;> 2n[nn/2]2

= (2w)n.

This concludes the proof.

Theorem 9. gimn) ^ [g(»î)]n[g(w)]m-

Consider g(») = | Gn\ = | ars\, ars= ± 1. Then it is well-known that

by adding and subtracting rows and columns we may reduce this

determinant to the diagonal form

gin) =

di

did2 ■ ■ ■ d„.

Now consider the nmth order matrix

[aillm      Olllm

X =

Onlln

Olnln

Onn-tn

Now the same process of adding rows and columns which diagonal-

ised g(«) will ensure that

X\

dllm 0

0      d2Im

0

0

m   m m

= di d2  ■ ■ ■ dn = [gin)]

Now consider
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axil m      ax2Im   -   -   '   a-Xnlm)

anxln

Gm   0      0 • • • 0  1

0      Gm

0 • • • 0      0      Gn

(axxGm    ax2Gm • • ■ axnGm)

anxG„, a„nG„

Now since each ars= +1, all the elements in the matrix on the

R.II.S. are ±1. Hence

Gm   0

0     G„

0

= [«(»)]"[«(»)]"■g(nm) ̂  I XI

This proves the theorem.

Theorem 10. g(mn) è [gW]"m" '■

For by Theorem 9

log g(mxm2) ^ «1 log g(m2) + m2 log g(mx),

Hence log g(m2) ^2m log g(m). Suppose

log g(mk) Si kmk~l log g(w).

Then

log g(mk+1) ^ mkmk~~x log g(m) + m* log g(w)

= (k + l)r»* log gO»).

Hence we have, by induction

g(mn) ̂ kW]»""'.

Theorem 11. g(m)^mg(m — l).

For,

1    1 ■ ■ ■ 1

— 1 or   1   m

= I ±1 U-i- I ±i|.-i• • •(-)m-i| ±i|—1

S mg(m — 1).

g(m) =
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As an immediate corollary we have, by Theorem 8 :

Theorem 12. IfX = 2m, giX-l) ^Xx'2-1.

Our central theorem which we shall prove is

Theorem 13. For all sufficiently large n, g(ra) iïw(1/2~e)n for any

given positive e.

In order to prove this, we shall require the following lemmas.

Lemma I. For x>2, £(x) is a monotonically increasing function, where

log(x - 1)
£(*) =

log0^)
and £(*)—>oo as x—>«>.

This is fairly obvious.

Lemma II. I/«^(x —l){(x)+1 then there exists an integer a, such that

xa^n^ix-l)a.

For, there certainly exists an integer a such that

(x - l)a+1 è » è ix - i)a

and, moreover, e*2:£(x) by the hypothesis. Hence

lOj
1 1

— < e-D
£i» log(* - 1)

log x — log(x — 1)

logf> - 1)

therefore, (1+ce) log (x—l)^ex log x and so ix — l)a+1¿xa. Hence

xa ^ ix - l)a+1 ^ » ^ (x - l)a.

Lemma III. If 7]ix) = ia+x)/ib+cx) where b, c are positive and

láx = ¿ then rjix) reaches its lowest value, either when x=l or when

x = d.

For jj'(x) has constant sign and is continuous for l^x^d.

Lemma IV. Given n, choose x = X a power of 2, satisfying Lemma II.

Then there exist integers a, ß such that ex^£(X) and a^ß^l and such

that X^iX-iy-^n^X^iX-l)"-^1.



1963] on the value of determinants 587

For by Lemma II, <*â£(X) and X*£n&(X-l)«. Hence

à 1.(AT (X - 1)-

Hence there exists an integer ß, such that (X/(X-l))ß^n/(X — l)a

è (X/(X - l))""1 and a è ß à 1. Hence X"(X - 1)«-» ^ «

^(A-D^+iA^-1.
We are now in a position to complete the proof. We have by

Lemma IV,

gin) è g[(X - 1)»*«JL»-»].

Hence by Theorem 9

logg(») à (X - l)-fl+i log g(X"-i) + Xi-i log g{(X - 1)«-"+»}

è (X - 1)—«-»03 - I)*""1 log g(X)

+ X^-\a - /3 + 1)(X - 1)«-" log  (X - 1), by Theorem 10,

^ (X - \y-e+liß - 1)X"-4X log X

+ XK-^a -ß+l)(X- l)-^X - 1) log X

by Theorems 8 and 12, since X is a power of 2. Hence

log g(n)

è \ log X- (X - l)°-W-i[(a -ß+l)(X-2) + (ß- 1)(X - 1)]

log g(n) ̂  I log X-(X - l)^X^[a(X - 2) - 1 + /?].

Also X'iX-V—t^n and so

» log n á X"(X - 1)—*[(«* - ß) log (X - 1) + ß log X].

Hence

log g(n) ^ log X q(X - 2) - 1 + ß

nlogn 2X /   X   \
a log(X - 1) + 0 log (^—J

Now o¡^)3^ 1 and so by Lemma III the lowest value of the expression

on the right hand side occurs when either ß = 1 or ß = a. Hence

l°g g(") ^     . , .   Bl
—-= mm{A,B},
n log n

where
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A =

B =

log*

2X

J. H. E. COHN

aiX - 2)

a log(X - 1) + log (-—-)

log X a(X - 1) - 1      e*(X - 1) - 1

2X logZ 2Xa

^o^ B = \-il+a) /2Xa,b\xta^iX)>lhencel + l/a<2,anAB>\

-l/X>\-t provided X>l/e.
But, given e>0 we may choose a power AT of 2 such that X> l/e.

Then for every «2:mo= (X—1)£(X)+1 we have the above inequality.

Also

A =
log X      X - 2

>

2X    log(X - 1)

log X      X - 2

log
X

1 -
X - 1

2X    log(X - 1)

alog(X--l) + log(^-^

X
log

1 -
X - 1

I
log(Z - 1) + log-

A   —   1

log X      X - 2     flog(X - 1)|log(X - 1)|

I     log X     ]2X    log(X - 1)

Hence A >\ — l/X> \ — e, and for all sufficiently large n,

log gin)       l_

n log n       2

i.e., gin) >»n(1/2_<) which concludes the proof of Theorem 13.
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