ON THE VALUE OF DETERMINANTS
JOHN H. E. COHN

The following problems were suggested, in the January 1962 issue
of the Bulletin:

What are the maximum values of nth order determinants subject to
the conditions

(a) each element, a,,=0or 1,

(b) each element, a,,= —1 or 1,

(c) each element, a¢,,=—1, 0 or 1?
We shall not solve these problems completely, but we shall show that
the three problems are equivalent and obtain the values approxi-
mately for large .

Notation. Define f(n), g(n), h(n) to be the maximum values of
nth order determinants with elements subject to (a), (b), and (c)
respectively and let F,, G., H, be the matrices satisfying the condi-
tions whose determinants have values f(x), g(n) and k(n). Of course
these matrices are not unique.

Preliminaries.
TuEOREM 1. g(n) =h(n) for each n.

Certainly, since the class of matrices with elements —1, 0 or 1
contains the class with elements —1 or 1 therefore, k(n) = g(n).

Secondly, consider H,. If H, has no zero element then clearly
g(n) =h(n). If H, has at least one zero element, suppose a,,=0. Then
consider the expansion by the rth row of k(n). h(n) =andn+a.d .
+ -+ +amAm. If 4:,>0, we could increase h(n) by replacing a,,
by 1. If 4,,<0 we could increase k(n) by replacing a,, by —1. If
A,,=0 we could replace a,s by 1 without altering k(n). Hence we
may in turn replace each zero element of H, without decreasing k(%).

Hence g(n) Zk(n), and so

g(n) = h(n).
THEOREM 2. g(n) =2""f(n—1), for each n.

Consider G,=(ars) (@rs= 11). If 61,71, a;,= —1 and in this case,
by multiplying each element in the sth column by —1 we obtain
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Similarly we can do the same for each element in the first column and
obtain

gn) = * =% 1, r,5= 2.

cf.

¢ o jmd  ph ek

1
Therefore, interchanging the second and third rows if the sign outside
is minus we obtain

1 1..:1
gn) = 1 g do=%1, r,s22
1
Now subtract the first row from each of the others and we obtain
1 1...1
0

g(n) =0 dn -1

0
But if d,,=—1 or 1, then d,,—1=0 or —2. Hence, expanding by
the first column we obtain

g(n) = (=2)"1| e.|(n-1y where e, =0 or 1.

Hence g(n) £2*f(n—1).

Conversely,
2= 1f(n — 1) = 2""‘] anln—l a,=0or1
= |20n|n-l
0
1
0
2a,, 1
0
= . = 20, — 1 1
. 1
0
-1 =1 1},,
-1 —-1.--=1 11,
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adding the last row to each of the others. But if ¢,,=0 or 1, then
2@, —1=1o0r —1 hence 2 f(n — 1) < g(n).
This concludes the proof, and shows incidentally that g(z) is always
a multiple of 271,
This shows that the three problems are equivalent and so we shall

concentrate on the second from now on.
We now prove the following results.

THEOREM 3. g(n) = (n—2)21,

For g(n) is not less than the circulant

1 1.+ 1 -1
-1 1.-- 1 1
1 1.+ 1 1|=(n-2)2%1
1... e —1 1

THEOREM 4. g(n+1) =2g(n).

For clearly f(n) 2f(n—1) and so by Theorem 2, the result follows.
THEOREM 5. g(n) Snn/2

This is an immediate corollary of Hadamard'’s inequality.
TaEOREM 6. g(1)=1; g(2) =2.

The first of these is trivial. For the second we observe that

=2

@z |

and g(2) =2, by Theorem 5.
THEOREM 7. For each n, g(2n) =2~ [g(n) ]2
Consider the 2nX2n matrix
Gy —G,
(G,. G,.>'
In this each element is 1 or —1.
Hence

—Gn

n 2Gn
Gn G”

G. Ga

g(2n) 2 y = | 2Ga| - | Ga| = 2°[g(m)]2.
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THEOREM 8. If n=2m, g(n) =n"/2

By Theorem 5, g(n) £n"/?, and we prove by induction that g(n)
gnnm.

(a) We know that g(2)=2.

(b) Suppose that result is true for n=2mo,

Then, by Theorem 7

g(2n) Z 2"[g(n)]?
= 2n[nn/2]2
= (2n)".

This concludes the proof.
THEOREM 9. g(mn) = [g(m) |[g(n) ]

Consider g(n) = IG,.I = |a,,] , @rs= 1. Then it is well-known that
by adding and subtracting rows and columns we may reduce this
determinant to the diagonal form

d,
- dy .
g(n) = = dyds + - - d,.
4
Now consider the nmth order matrix
alllm al2Im s alnIm
X =
Gilm e Gunlm

Now the same process of adding rows and columns which diagonal-
ised g(n) will ensure that

diln O 0
0  doln
| x| =
0 -« --- I,

Now consider
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aulm G12lm - 01 I (Gmw O O0---0 )
| 0 Gn
1.
L
laﬂllm """" annImJ 0 0 0 Gm
011Gm  012Gn + + + 413G
an;Gm ....... an':Gm

Now since each a,,= +1, all the elements in the matrix on the
R.H.S. are +1. Hence

Gn
gnm) = | X|

= [g(m)]"[g(m)]".
Gn
This proves the theorem.
THEOREM 10. g(m») = [g(m) >
For by Theorem 9
log g(mims) 2 my log g(ms) + ms log g(m),
Hence log g(m?) = 2m log g(m). Suppose
log g(m*) = km*~! log g(m).
Then
log g(m*+Y) = mkm*=2 log g(m) 4 m* log g(m)
= (k + )m* log g(m).
Hence we have, by induction
glm™) = [glm)]"".
TaEOREM 11. g(m) Smg(m—1).

For,

1 1---1
gtm) = |

—1lor 1

m

| +1]mos = | £1]mes - - - (=)™ £1]0m
< mg(m — 1).
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As an immediate corollary we have, by Theorem 8:
THEOREM 12. If X =2m, g(X —1) 2 XX/*-1,
Our central theorem which we shall prove is

TaEOREM 13. For all sufficiently large n, g(n)Zn/2=97 for any
given positive e.

In order to prove this, we shall require the following lemmas.
LEMMA 1. For x> 2, £(x) is a monotonically increasing function, where
log(x — 1)

1 <1+ 1)
o8 x—1

£) =

and E(x)— o as x— o,
This is fairly obvious.

LemMA I If n= (x —1)¥@+1 then there exists an integer o, such that
x22n=(x—1)

For, there certainly exists an integer a such that
(x—Dttznz(x— 1)

and, moreover, a=£(x) by the hypothesis. Hence

1(“)
ogx—l

o) logx — 1)
_logx — log(x — 1)
B log(x — 1)

IIA

1
o

therefore, (1+a) log (x—1)=Za log x and so (x—1)*t1=x2 Hence
x*Z(x—1)H2n2(x—1)~

LemMa III. If 9(x)=(a+x)/(b+4cx) where b, ¢ are positive and
1=x=d then 9(x) reaches its lowest value, either when x=1 or when
x=d.

For 1'(x) has constant sign and is continuous for 1 Sx <d.

LeEMMA IV. Given n, choose x=X a power of 2, satisfying Lemma 11.
Then there exist integers a, B such that a Z£(X) and a=B=1 and such
that XA(X —1)eFzpnz XA 1(X —1)aFtl,
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For by Lemma II, a=#(X) and X*=n2 (X —1)= Hence

=) 2w

Hence there exists an integer 8, such that (X/(X—-1))f=n/(X ~1)
=X/ (X-1))* and a=f=1. Hence X¥(X —1)vFf=n
= (X —1)ap+1X6-1,

We are now in a position to complete the proof. We have by
Lemma IV,

g(n) 2 g[(X — 1)=phixs-1],
Hence by Theorem 9

log g(n) Z (X — 1)=#+ log g(X*~) + X*~! log g{ (X — 1)=#+1)
2 (X — 1)#+1(8 — 1) X#2 log g(X)
+ XY a — B+ 1)(X — 1)*flog (X — 1), by Theorem 10,
= (X — 1)=#+1(8 — 1) XF-21X log X
+ XY a— B+ D)X — 1)*FEFX — 1) log X

by Theorems 8 and 12, since X is a power of 2. Hence

log g(n)
2 3log X (X — )X 1[(a — B+ 1)(X —2) + (B — 1)(X - 1)]
log g(n) Z § log X+ (X — 1)*X6-1a(X — 2) — 1 4 8].

Also X#(X —1)*8=5 and so
nlogn < XA(X — 1) *[(a — B) log (X — 1) + Blog X].
Hence
log g(n) > log X (X -2)—-1+8

nlogn ~  2X X\
alog(X — 1) 4 Blog (—-—)

X—-1

Now a=f2=1 and so by Lemma III the lowest value of the expression
on the right hand side occurs when either =1 or §=a. Hence

log ¢() = min{A, B},

nlogn

where
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= log X a(X — 2)

X
alog(X — 1) + log (X 1)

polgX aX-D-1 aX-1 -1
T 2X  algX  2Xa

Now B=1—(14+a)/2Xa, buta=£(X)>1hence1+1/a<2,and B>$%
—1/X>1—e provided X >1/e.
But, given €>0 we may choose a power X of 2 such that X>1/e.

Then for every n=no= (X —1)¥®+! we have the above inequality.
Also

)

log
_ log X X-2 1 X-1
2X log(X — 1) X \|
alog(X — 1) + log X 1)

log
logX X-2 X-1

2X .log(X - 1) 4

log(X — 1) + log

X -1

log X X -—2 {log(X - 1)}
T 2X log(x -1 logX
Hence A>31—1/X>%—¢, and for all sufficiently large =,
log g(n 1
g g(n) S

— —€

nlog n 2

i.e., g(n) >n*1/2-9 which concludes the proof of Theorem 13.
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