ON THE VALUE OF DETERMINANTS

JOHN H. E. COHN

The following problems were suggested, in the January 1962 issue of the Bulletin:

What are the maximum values of nth order determinants subject to the conditions

- (a) each element, $a_{rs} = 0$ or 1,
- (b) each element, $a_{rs} = -1$ or 1,
- (c) each element, $a_{rs} = -1$, 0 or 1?

We shall not solve these problems completely, but we shall show that the three problems are equivalent and obtain the values approximately for large n.

Notation. Define f(n), g(n), h(n) to be the maximum values of nth order determinants with elements subject to (a), (b), and (c) respectively and let F_n , G_n , H_n be the matrices satisfying the conditions whose determinants have values f(n), g(n) and h(n). Of course these matrices are not unique.

Preliminaries.

THEOREM 1. g(n) = h(n) for each n.

Certainly, since the class of matrices with elements -1, 0 or 1 contains the class with elements -1 or 1 therefore, $h(n) \ge g(n)$.

Secondly, consider H_n . If H_n has no zero element then clearly g(n) = h(n). If H_n has at least one zero element, suppose $a_{rs} = 0$. Then consider the expansion by the rth row of h(n). $h(n) = a_{r1}A_{r1} + a_{r2}A_{r2} + \cdots + a_{rn}A_{rn}$. If $A_{rs} > 0$, we could increase h(n) by replacing a_{rs} by 1. If $A_{rs} < 0$ we could increase h(n) by replacing a_{rs} by -1. If $A_{rs} = 0$ we could replace a_{rs} by 1 without altering h(n). Hence we may in turn replace each zero element of H_n without decreasing h(n).

Hence $g(n) \ge h(n)$, and so

$$g(n) = h(n)$$
.

THEOREM 2. $g(n) = 2^{n-1}f(n-1)$, for each n.

Consider $G_n = (a_{rs})$ $(a_{rs} = \pm 1)$. If $a_{1s} \neq 1$, $a_{1s} = -1$ and in this case, by multiplying each element in the sth column by -1 we obtain

$$g(n) = \pm \begin{vmatrix} 1 & 1 & \cdots & 1 \\ & & b_{rs} \end{vmatrix} \qquad b_{rs} = \pm 1, \qquad r \geq 2.$$

Received by the editors April 17, 1962.

Similarly we can do the same for each element in the first column and obtain

$$g(n) = \pm \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & & & \\ \vdots & & c_{rs} \\ \vdots & & & \\ 1 & & & \end{vmatrix}$$
 $c_{rs} = \pm 1, \quad r, s \ge 2.$

Therefore, interchanging the second and third rows if the sign outside is minus we obtain

$$g(n) = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & & & \\ \vdots & & d_{rs} \\ 1 & & & \end{vmatrix}$$

$$d_{rs} = \pm 1, \quad r, s \geq 2.$$

Now subtract the first row from each of the others and we obtain

$$g(n) = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 0 & & & \\ 0 & d_{rs} & -1 \\ \vdots & & \\ 0 & & & \end{bmatrix}.$$

But if $d_{rs} = -1$ or 1, then $d_{rs} - 1 = 0$ or -2. Hence, expanding by the first column we obtain

$$g(n) = (-2)^{n-1} |e_{rs}|_{(n-1)}$$
 where $e_{rs} = 0$ or 1.

Hence $g(n) \leq 2^{n-1}f(n-1)$.

Conversely,

adding the last row to each of the others. But if $a_{rs}=0$ or 1, then

$$2a_{n} - 1 = 1$$
 or -1 hence $2^{n-1}f(n-1) \le g(n)$.

This concludes the proof, and shows incidentally that g(n) is always a multiple of 2^{n-1} .

This shows that the three problems are equivalent and so we shall concentrate on the second from now on.

We now prove the following results.

THEOREM 3. $g(n) \ge (n-2)2^{n-1}$.

For g(n) is not less than the circulant

$$\begin{vmatrix} 1 & 1 & \cdots & 1 & -1 \\ -1 & 1 & \cdots & 1 & 1 \\ 1 & -1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \cdots & \cdots & -1 & 1 \end{vmatrix} = (n-2)2^{n-1}.$$

THEOREM 4. $g(n+1) \ge 2g(n)$.

For clearly $f(n) \ge f(n-1)$ and so by Theorem 2, the result follows.

THEOREM 5. $g(n) \leq n^{n/2}$.

This is an immediate corollary of Hadamard's inequality.

THEOREM 6. g(1) = 1; g(2) = 2.

The first of these is trivial. For the second we observe that

$$g(2) \ge \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} = 2$$

and $g(2) \leq 2$, by Theorem 5.

THEOREM 7. For each n, $g(2n) \ge 2^n [g(n)]^2$.

Consider the $2n \times 2n$ matrix

$$\begin{pmatrix} G_n & -G_n \\ G_n & G_n \end{pmatrix}$$
.

In this each element is 1 or -1.

Hence

$$g(2n) \geq \left| \begin{array}{cc} G_n & -G_n \\ G_n & G_n \end{array} \right| = \left| \begin{array}{cc} 2G_n & 0 \\ G_n & G_n \end{array} \right|, = \left| 2G_n \left| \cdot \left| G_n \right| = 2^n [g(n)]^2.$$

THEOREM 8. If $n = 2^m$, $g(n) = n^{n/2}$.

By Theorem 5, $g(n) \le n^{n/2}$, and we prove by induction that $g(n) \ge n^{n/2}$.

- (a) We know that g(2) = 2.
- (b) Suppose that result is true for $n = 2^{m_0}$.

Then, by Theorem 7

$$g(2n) \ge 2^n [g(n)]^2$$

$$\ge 2^n [n^{n/2}]^2$$

$$= (2n)^n.$$

This concludes the proof.

THEOREM 9. $g(mn) \ge [g(m)]^n [g(n)]^m$.

Consider $g(n) = |G_n| = |a_{rs}|$, $a_{rs} = \pm 1$. Then it is well-known that by adding and subtracting rows and columns we may reduce this determinant to the diagonal form

Now consider the *nm*th order matrix

$$X = \begin{pmatrix} a_{11}I_m & a_{12}I_m & \cdots & a_{1n}I_m \\ \vdots & & & & \\ \vdots & & & & \\ a_{n1}I_m & \cdots & \cdots & a_{nn}I_m \end{pmatrix}.$$

Now the same process of adding rows and columns which diagonalised g(n) will ensure that

$$|X| = \begin{vmatrix} d_{1}I_{m} & 0 & \cdots & 0 \\ 0 & d_{2}I_{m} & \ddots & & & \\ & \ddots & & & \ddots & & \\ 0 & \cdots & \cdots & \ddots & d_{n}I_{m} \end{vmatrix}$$
$$= d_{1}^{m} d_{2}^{m} \cdots d_{n}^{m} = [g(n)]^{m}.$$

Now consider

$$\begin{bmatrix}
a_{11}I_m & a_{12}I_m & \cdots & a_{1n}I_m \\
\vdots & & & & & \\
\vdots & & & & & \\
a_{n1}I_m & \cdots & \cdots & a_{nn}I_m
\end{bmatrix}
\begin{bmatrix}
G_m & 0 & 0 & \cdots & 0 \\
0 & G_m & & & \\
\vdots & & & & \\
\vdots & & & & & \\
0 & \cdots & 0 & 0 & G_m
\end{bmatrix}$$

$$= \begin{bmatrix}
a_{11}G_m & a_{12}G_m & \cdots & a_{1n}G_m \\
\vdots & & & & & \\
a_{n1}G_m & \cdots & \cdots & a_{nn}G_m
\end{bmatrix}.$$

Now since each $a_{rs} = \pm 1$, all the elements in the matrix on the R.H.S. are ± 1 . Hence

$$g(nm) \geq |X| \begin{vmatrix} G_m & 0 & \cdots & 0 \\ 0 & G_m & & \\ \vdots & & & G_m \end{vmatrix} = [g(n)]^m [g(m)]^n.$$

This proves the theorem.

THEOREM 10. $g(m^n) \ge [g(m)]^{nm^{n-1}}$.

For by Theorem 9

$$\log g(m_1m_2) \ge m_1 \log g(m_2) + m_2 \log g(m_1)_{\bullet}$$

Hence $\log g(m^2) \ge 2m \log g(m)$. Suppose

$$\log g(m^k) \ge km^{k-1} \log g(m).$$

Then

$$\log g(m^{k+1}) \ge mkm^{k-1}\log g(m) + m^k\log g(m)$$
$$= (k+1)m^k\log g(m).$$

Hence we have, by induction

$$g(m^n) \geq [g(m)]^{nm^{n-1}}$$
.

THEOREM 11. $g(m) \leq mg(m-1)$.

For,

$$g(m) = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ -1 & \text{or} & 1 \end{vmatrix}_{m}$$

$$= |\pm 1|_{m-1} - |\pm 1|_{m-1} \cdots (-)^{m-1}| \pm 1|_{m-1}$$

$$\leq mg(m-1).$$

As an immediate corollary we have, by Theorem 8:

THEOREM 12. If $X = 2^m$, $g(X-1) \ge X^{X/2-1}$.

Our central theorem which we shall prove is

THEOREM 13. For all sufficiently large n, $g(n) \ge n^{(1/2-\epsilon)n}$ for any given positive ϵ .

In order to prove this, we shall require the following lemmas.

LEMMA I. For x > 2, $\xi(x)$ is a monotonically increasing function, where

$$\xi(x) = \frac{\log(x-1)}{\log\left(1+\frac{1}{x-1}\right)}$$

and $\xi(x) \rightarrow \infty$ as $x \rightarrow \infty$.

This is fairly obvious.

LEMMA II. If $n \ge (x-1)^{\xi(x)+1}$ then there exists an integer α , such that $x^{\alpha} \ge n \ge (x-1)^{\alpha}$.

For, there certainly exists an integer α such that

$$(x-1)^{\alpha+1} \ge n \ge (x-1)^{\alpha}$$

and, moreover, $\alpha \ge \xi(x)$ by the hypothesis. Hence

$$\frac{1}{\alpha} \le \frac{1}{\xi(x)} = \frac{\log\left(\frac{x}{x-1}\right)}{\log(x-1)}$$
$$= \frac{\log x - \log(x-1)}{\log(x-1)}$$

therefore, $(1+\alpha) \log (x-1) \le \alpha \log x$ and so $(x-1)^{\alpha+1} \le x^{\alpha}$. Hence $x^{\alpha} \ge (x-1)^{\alpha+1} \ge n \ge (x-1)^{\alpha}$.

LEMMA III. If $\eta(x) = (a+x)/(b+cx)$ where b, c are positive and $1 \le x \le d$ then $\eta(x)$ reaches its lowest value, either when x=1 or when x=d

For $\eta'(x)$ has constant sign and is continuous for $1 \le x \le d$.

LEMMA IV. Given n, choose x = X a power of 2, satisfying Lemma II. Then there exist integers α , β such that $\alpha \ge \xi(X)$ and $\alpha \ge \beta \ge 1$ and such that $X^{\beta}(X-1)^{\alpha-\beta} \ge n \ge X^{\beta-1}(X-1)^{\alpha-\beta+1}$. For by Lemma II, $\alpha \ge \xi(X)$ and $X^{\alpha} \ge n \ge (X-1)^{\alpha}$. Hence

$$\left(\frac{X}{X-1}\right)^{\alpha} \ge \frac{n}{(X-1)^{\alpha}} \ge 1.$$

Hence there exists an integer β , such that $(X/(X-1))^{\beta} \ge n/(X-1)^{\alpha}$ $\ge (X/(X-1))^{\beta-1}$ and $\alpha \ge \beta \ge 1$. Hence $X^{\beta}(X-1)^{\alpha-\beta} \ge n$ $\ge (X-1)^{\alpha-\beta+1}X^{\beta-1}$.

We are now in a position to complete the proof. We have by Lemma IV,

$$g(n) \geq g[(X-1)^{\alpha-\beta+1}X^{\beta-1}].$$

Hence by Theorem 9

$$\begin{split} \log g(n) & \geq (X-1)^{\alpha-\beta+1} \log g(X^{\beta-1}) + X^{\beta-1} \log g \big\{ (X-1)^{\alpha-\beta+1} \big\} \\ & \geq (X-1)^{\sigma-\beta+1} (\beta-1) X^{\beta-2} \log g(X) \\ & + X^{\beta-1} (\alpha-\beta+1) (X-1)^{\alpha-\beta} \log (X-1), \text{ by Theorem 10,} \\ & \geq (X-1)^{\alpha-\beta+1} (\beta-1) X^{\beta-2} \frac{1}{2} X \log X \\ & + X^{\beta-1} (\alpha-\beta+1) (X-1)^{\alpha-\beta} (\frac{1}{2} X-1) \log X \end{split}$$

by Theorems 8 and 12, since X is a power of 2. Hence

 $\log g(n)$

$$\geq \frac{1}{2} \log X \cdot (X-1)^{\alpha-\beta} X^{\beta-1} [(\alpha-\beta+1)(X-2)+(\beta-1)(X-1)] \\ \log g(n) \geq \frac{1}{2} \log X \cdot (X-1)^{\alpha-\beta} X^{\beta-1} [\alpha(X-2)-1+\beta].$$

Also $X^{\beta}(X-1)^{\alpha-\beta} \ge n$ and so

$$n \log n \leq X^{\beta}(X-1)^{\alpha-\beta} [(\alpha-\beta) \log (X-1) + \beta \log X].$$

Hence

$$\frac{\log g(n)}{n \log n} \ge \frac{\log X}{2X} \frac{\alpha(X-2) - 1 + \beta}{\alpha \log(X-1) + \beta \log\left(\frac{X}{X-1}\right)}.$$

Now $\alpha \ge \beta \ge 1$ and so by Lemma III the lowest value of the expression on the right hand side occurs when either $\beta = 1$ or $\beta = \alpha$. Hence

$$\frac{\log g(n)}{n\log n} \ge \min\{A, B\},\,$$

where

$$A = \frac{\log X}{2X} \frac{\alpha(X-2)}{\alpha \log(X-1) + \log\left(\frac{X}{X-1}\right)},$$

$$B = \frac{\log X}{2X} \frac{\alpha(X-1) - 1}{\alpha \log X} = \frac{\alpha(X-1) - 1}{2X\alpha}.$$

Now $B = \frac{1}{2} - (1+\alpha)/2X\alpha$, but $\alpha \ge \xi(X) > 1$ hence $1 + 1/\alpha < 2$, and $B > \frac{1}{2} - 1/X > \frac{1}{2} - \epsilon$ provided $X > 1/\epsilon$.

But, given $\epsilon > 0$ we may choose a power X of 2 such that $X > 1/\epsilon$. Then for every $n \ge n_0 = (X-1)^{\xi(X)+1}$ we have the above inequality. Also

$$A = \frac{\log X}{2X} \cdot \frac{X - 2}{\log(X - 1)} \cdot \left\{ 1 - \frac{\log \frac{X}{X - 1}}{\alpha \log(X - 1) + \log \left(\frac{X}{X - 1}\right)} \right\}$$

$$> \frac{\log X}{2X} \cdot \frac{X - 2}{\log(X - 1)} \left\{ 1 - \frac{\log \frac{X}{X - 1}}{\log(X - 1) + \log \frac{X}{X - 1}} \right\}$$

$$= \frac{\log X}{2X} \cdot \frac{X - 2}{\log(X - 1)} \left\{ \frac{\log(X - 1)}{\log X} \right\}.$$

Hence $A > \frac{1}{2} - 1/X > \frac{1}{2} - \epsilon$, and for all sufficiently large n,

$$\frac{\log g(n)}{n\log n} > \frac{1}{2} - \epsilon$$

i.e., $g(n) > n^{n(1/2-\epsilon)}$ which concludes the proof of Theorem 13.

BEDFORD COLLEGE, LONDON, ENGLAND