CONCERNING AN APPROXIMATION OF COPSON

I. D. BUCKHOLTZ

For each complex number z and each positive integer n, define $S_n(z)$ by the equation

(1)
$$e^{nz} = \sum_{p=0}^{n} \frac{(nz)^p}{p!} + \frac{(nz)^n}{n!} S_n(z).$$

In 1913, Ramanujan [2] made the assertion (in a somewhat different notation) that

$$S_n(1) = \frac{n!}{2} \left(\frac{e}{n}\right)^n - \frac{2}{3} + \frac{4}{135n} + O\left(\frac{1}{n^2}\right).$$

Proofs for this and related matters were given independently in 1928 by G. Szegö [3] and G. N. Watson [4].

In 1932, E. T. Copson [1] proved that $\{S_n(-1)\}$ is a decreasing sequence with limit $-\frac{1}{2}$, and derived the asymptotic series

$$S_n(-1) \sim -\frac{1}{2} + \frac{1}{8n} + \frac{1}{32n^2} - \frac{1}{128n^3} - \frac{13}{256n^4} + \cdots$$

The determination of the coefficients is quite complicated (and, for the coefficient of n^{-4} , incorrect).

In the present paper we obtain Copson's series by a simpler method which yields an asymptotic expansion for $S_n(z)$ valid for every complex number z except z=1.

For our principle result we require the following three lemmas concerning the function $S_n(z)$ defined by (1) and the function $T_n(z)$ defined by

(2)
$$e^{nz} = \frac{(nz)^n}{n!} T_n(z) + \sum_{v=n+1}^{\infty} \frac{(nz)^p}{p!} .$$

LEMMA 1. For each positive integer n, the functions $S_n(z)$ and $T_n(z)$ have the following properties:

(i)
$$S_n(z) + T_n(z) = \frac{n!(e/n)^n}{(ze^{1-z})^n};$$

Received by the editors May 18, 1962.

(ii)
$$S_n(z) = \frac{z}{1-z} \left[1 - \frac{S_n'(z)}{n} \right]$$

and

$$T_n(z) = \frac{z}{z-1} \left[1 + \frac{T_n'(z)}{n} \right];$$

(iii) $|S_n(z)| < en^{1/2}$ if $|z| \le 1$, $|T_n(z)| < en^{1/2}$ if $|z| \ge 1$; and if $|ze^{1-z}| \ge 1$, then both $|S_n(z)|$ and $|T_n(z)|$ are less than $2en^{1/2}$.

INDICATION OF PROOF. (i) and (ii) are direct consequences of the definitions. To prove (iii) we make use of the fact that

$$\begin{vmatrix} S_n(z) \end{vmatrix} \le S_n(1)$$
 if $|z| \le 1$, and $|T_n(z)| \le T_n(1)$ if $|z| \ge 1$.

Since each of $S_n(1)$ and $T_n(1)$ is positive, neither is as large as $S_n(1) + T_n(1) = n!(e/n)^n \le en^{1/2}$; the last part of (iii) then follows from (i).

Notation. The linear operator which transforms f(z) into zf'(z)/(z-1) will be denoted by (z/(z-1))(d/dz). J and K will be the sets given by $\{z: |z| \le 1 \text{ and } |ze^{1-z}| \le 1\}$ and $\{z: |z| \ge 1 \text{ and } |ze^{1-z}| \le 1\}$, respectively. If M is a set, $d_M(z)$ and $\phi_M(z)$ will denote the distance and characteristic functions for the set M; specifically, $d_M(z)$ is the greatest lower bound of distances from z to points of M, and $\phi_M(z)$ is 1 or 0 according as z is or is not in M.

LEMMA 2. For every positive integer k,

$$S_n(z) = \sum_{r=0}^{k-1} \left(\frac{1}{n} \frac{z}{z-1} \frac{d}{dz} \right)^r \frac{z}{1-z} + \left(\frac{1}{n} \frac{z}{z-1} \frac{d}{dz} \right)^k S_n(z),$$

and

$$T_n(z) = \sum_{r=0}^{k-1} \left(\frac{1}{n} \frac{z}{z-1} \frac{d}{dz} \right)^r \frac{z}{z-1} + \left(\frac{1}{n} \frac{z}{z-1} \frac{d}{dz} \right)^k T_n(z).$$

Proof. Mathematical induction and (ii) of Lemma 1.

LEMMA 3. Suppose $0 < \epsilon < 1$. If k is a nonnegative integer, then

(i)
$$\left| \left(\frac{z}{z-1} \frac{d}{dz} \right)^k S_n(z) \right| < 14 \frac{2^{k^2+3k}}{\epsilon^{2k+2}} \quad \text{if } d_K(z) \ge \epsilon,$$

and

(ii)
$$\left| \left(\frac{z}{z-1} \frac{d}{dz} \right)^k T_n(z) \right| < 14 \frac{2^{k^2+3k}}{\epsilon^{2k+2}} \quad \text{if } d_J(z) \ge \epsilon.$$

PROOF. Since the proofs for the two inequalities are essentially the same, we shall omit the proof of (ii).

Suppose first that k=0. From Lemma 1, $|S_n(z)| < 2en^{1/2}$ for every point z in the closure of the complement of K. Therefore, if $d_K(z) \ge \epsilon$,

$$\left| S_n'(z) \right| < \frac{2en^{1/2}}{d_K(z)} \le \frac{2en^{1/2}}{\epsilon}$$

by the Cauchy inequality for derivatives. Since 1 is in K, $|z-1| \ge \epsilon$. Therefore, from (ii) of Lemma 1, we have

$$|S_n(z)| < \left(1 + \frac{1}{\epsilon}\right) \left(1 + \frac{2en^{-1/2}}{\epsilon}\right) < \frac{14}{\epsilon^2},$$

since $\epsilon < 1$.

Suppose now that k is an integer for which (i) is true for every positive ϵ less than 1. Let

$$F(z) = \left(\frac{z}{z-1} \frac{d}{dz}\right)^k S_n(z).$$

Then for all z for which $d_K(z) \ge \epsilon/2$,

$$|F(z)| < 14 \frac{2^{k^2+3k}}{(\epsilon/2)^{2k+2}} = 14 \frac{2^{k^2+5k+2}}{\epsilon^{2k+2}}$$

Then by the Cauchy inequality, we have, for all z such that $d_K(z) \ge \epsilon$,

$$|F'(z)| < 14 \frac{2^{k^2+5k+3}}{\epsilon^{2k+3}}$$
.

Since

$$\left|\frac{z}{z-1}\right| \le 1 + 1/\epsilon < 2/\epsilon,$$

we have

$$\left| \left(\frac{z}{z-1} \frac{d}{dz} \right) F(z) \right| < 14 \frac{2^{k^2+5k+4}}{\epsilon^{2k+4}} \cdot$$

Consequently, by mathematical induction, (i) is true for every non-negative integer k. This completes the proof.

If for each nonnegative integer k we let

$$U_k(z) = \left(\frac{z}{z-1} \frac{d}{dz}\right)^k \frac{z}{1-z},$$

then for the first few values of k we have

$$U_0(z) = \frac{z}{1-z}, \qquad U_1(z) = \frac{z}{(z-1)^3},$$

$$U_2(z) = (-1)\frac{z+2z^2}{(z-1)^5}, \qquad U_3(z) = \frac{z+8z^2+6z^3}{(z-1)^7},$$

$$U_4(z) = (-1)\frac{z+22z^2+58z^3+24z^4}{(z-1)^9},$$

and, in general,

$$U_k(z) = \frac{(-1)^{k+1}Q_k(z)}{(z-1)^{2k+1}},$$

where, for k>1, $Q_k(z)$ is a polynomial of degree k with positive integer coefficients.

We are now in a position to state our principle result, the proof of which follows immediately from Lemmas 2 and 3.

THEOREM. Suppose $\epsilon > 0$. For every positive integer k, the asymptotic formulas

(3)
$$S_n(z) = \sum_{r=0}^{k-1} \left(\frac{1}{n}\right)^r U_r(z) + O(n^{-k})$$

and

(4)
$$T_n(z) = -\sum_{r=0}^{k-1} \left(\frac{1}{n}\right)^r U_r(z) + O(n^{-k})$$

hold uniformly for $d_K(z) \ge \epsilon$ and $d_J(z) \ge \epsilon$, respectively.

Since every point except z=1 belongs either to the complement of J or to the complement of K, we can make use of (i) of Lemma 1 and the characteristic functions $\phi_J(z)$ and $\phi_K(z)$ to combine (3) and (4) and obtain the following:

COROLLARY. If $z \neq 1$, then $S_n(z)$ and $T_n(z)$ have the asymptotic expansions

(5)
$$S_n(z) \sim n! \left(\frac{e^z}{nz}\right)^n \phi_K(z) + \sum_{r=0}^{\infty} \left(\frac{1}{n}\right)^r U_r(z), \text{ and }$$

(6)
$$T_n(z) \sim n! \left(\frac{e^z}{nz}\right)^n \phi_J(z) - \sum_{r=0}^{\infty} \left(\frac{1}{n}\right)^r U_r(z).$$

If z = -1, (5) reduces to Copson's series. Ramanujan's approximation for $S_n(1)$ is, in view of (5), a considerably more singular result than it would otherwise appear.

REFERENCES

- 1. E. T. Copson, An approximation connected with e^{-x} , Proc. Edinburgh Math. Soc. (2) 3 (1932-33), 201-206.
 - 2. S. Ramanujan, Collected papers, p. 26, Cambridge, 1927.
- 3. G. Szegö, Über einige von S. Ramanujan gestellte Aufgaben, J. London Math. Soc. 3 (1928), 225-232.
- 4. G. N. Watson, Approximations connected with ex, Proc. London Math. Soc. (2) 29 (1928-29), 293-308.

University of North Carolina

ON THE LOCAL LINEARIZATION OF DIFFERENTIAL EQUATIONS¹

PHILIP HARTMAN

1. Consider the autonomous system of real, nonlinear differential equations

(1.1)
$$x' = Ex + F(x)$$
, where $F(|x|) = o(|x|)$ as $x \to 0$,

x is a (Euclidean) vector, F(x) a smooth vector-valued function of x, and E a constant matrix with eigenvalues e_1, e_2, \cdots satisfying

Let the solution $\xi(t, x)$ of (1.1) starting at x for t = 0 be written as

$$(1.3) T^t: x^t = \xi(t, x) = e^{Et}x + X(t, x),$$

where X(t, x) = o(|x|) as $x \to 0$ (for fixed t). Thus if T^t is considered as a map $x \to x^t$, for fixed t, the composition rule

$$(1.4) T^t T^s = T^{t+s}$$

is valid for small |x|. Correspondingly, the linear system

Received by the editors May 26, 1962.

¹ This research was supported by the Air Force Office of Scientific Research.