CONCERNING AN APPROXIMATION OF COPSON
J. D. BUCKHOLTZ
For each complex number 2z and each positive integer %, define

S.(z) by the equation

1 e = i (”Z)p+ (nz)»

=0 P! n!

Sx(2).

In 1913, Ramanujan [2] made the assertion (in a somewhat differ-
ent notation) that

5.0 = 2(2) = 24+ o)
" 2 \a 135n n)’
Proofs for this and related matters were given independently in 1928
by G. Szegé [3] and G. N. Watson [4].
In 1932, E. T. Copson [1] proved that {S,(—1)} is a decreasing
sequence with limit — %, and derived the asymptotic series
1 1 1 13
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The determinaticn of the coefficients is quite complicated (and, for
the coefficient of ™4, incorrect).

In the present paper we obtain Copson'’s series by a simpler method
which yields an asymptotic expansion for S,(z) valid for every com-
plex number z except z=1.

For our principle result we require the following three lemmas con-
cerning the function S,(z) defined by (1) and the function T,(z)
defined by

) (mz)?

p=n+l P'

@ e

LEMMA 1. For each positive integer n, the functions S.(2) and T.(2)
have the following properties:

nl(e/n)" )
(zel—z)n ’

@) Sa(2) + Talz) =
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G su9 = —[1- 7]

n

and

3

T (Z):l

n

Z
T.(2) = [1 +
z— 1

(iii) | Sa(z)| <en'’? if |z| £1, | Tu(2)| <en'’ if |z| 21; and if
| ze'~2| 21, then both | Su(2)| and | Tu(2)| are less than 2ent’2.

INDICATION OF PROOF. (i) and (ii) are direct consequences of the
definitions. To prove (iii) we make use of the fact that

| S.(3)| < S.(1)  if |z] £1, and
| T.(s)| < T.(1) if |2] = 1.
Since each of S,(1) and T.(1) is positive, neither is as large as

S.(1)+7T.(1)=n!(e/n)*<en''?; the last part of (iii) then follows from
().

Notation. The linear operator which transforms f(z) into
zf'(2) /(2—1) will be denoted by (z/(z—1))(d/dz). J and K will be the
sets given by {z:]|z| <1 and |ze~¢| <1} and {a: |z 21 and
|ze""| él}, respectively. If M is a set, dy(2) and ¢x(2) will denote
the distance and characteristic functions for the set M; specifically,
du(2) is the greatest lower bound of distances from z to points of M,
and ¢x(z) is 1 or 0 according as z is or is not in M.

LEMMA 2. For every positive integer k,

5.(2) "i‘(l z d)’ 2 +(1 z d>kS()
al8) = - - - - n )
=\ 2—14dz) 1 —2 n z—1 dz £
and

Tn(z)=k§(i : d)’ ? +(i : i)"r,.(z).

—0 nz—lb—z z— 1 n z2—1 dz

ProoF. Mathematical induction and (ii) of Lemma 1.

LeEMMA 3. Suppose 0<e<1. If k is a nonnegative integer, then

0 (2 2 s

and

Qk*+3k

<14 if dg(2) = e,

e2k+2
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(zjl 5>T(z)

PRroOF. Since the proofs for the two inequalities are essentially the
same, we shall omit the proof of (ii).

Suppose first that k#=0. From Lemma 1, | S.(2)| <2en!/? for every
point z in the closure of the complement of K. Therefore, if dx(2) =e¢,

2en1/3 2entl?
di( ) €

by the Cauchy inequality for derivatives. Since 1 is in K, Iz-— 1[ =€
Therefore, from (ii) of Lemma 1, we have

1 2en—1/ 14
| Sa(2) | <(1+——)(1+ <=
€ € e?
since e<1.

Suppose now that k is an integer for which (i) is true for every
positive € less than 1. Let

F() = (—z—— i) Su(2).

Qr*+3k

(ii) < 14

if di(2) 2 e

|S{@)| <

—-14d
Then for all z for which dx(z) =¢/2,
2k +3k 2k Bk+2
|F(z)l <14 (e/2)2%+2 =14 2k+2

Then by the Cauchy inequality, we have, for all z such that dx(2) =€,

QR +5E+3
’
| F'(s)| < 14 prew
Since
3
’§ 14 1/e < 2/,
z—1
we have
2 d 2K +5k+4
( )F(z) <14
z2—1 d 2kt

Consequently, by mathematical induction, (i) is true for every non-
negative integer k. This completes the proof.
If for each nonnegative integer & we let
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Ua(o) (z d)" g
= z2—1 dz l—z’

then for the first few values of £ we have

Ue) = —— Us(z) = —
o(z)_l—z’ 1(z)—(z;_l)s’
2+ 222 2 + 832 + 62°
Uz(z) = (—1)(2 _ 1)5; Ua(z) = —-—(;_—157—-
2+ 2232 4 5853 + 2424
Ui = ()

and, in general,

(_ 1)k+le(z)

Ui(e) = (z — 1)+ ’

where, for k> 1, Q.(2) is a polynomial of degree k with positive integer
coefficients.

We are now in a position to state our principle result, the proof of
which follows immediately from Lemmas 2 and 3.

THEOREM. Suppose ¢>0. For every positive integer k, the asymptotic
formulas

-1 1 r
@ 5@ =3 (—) U, + 0(n)
r=0 n
and
k=1 1 r
@ o =--3% (;) U.&) + 0(n¥)

hold uniformly for dx(2) = € and d;(3) Z ¢, respectively.

Since every point except 2=1 belongs either to the complement of
J or to the complement of K, we can make use of (i) of Lemma 1 and
the characteristic functions ¢;(2) and ¢x(z) to combine (3) and (4)
and obtain the following:

COROLLARY. If 27#1, then S,(2) and T,(z) have the asymptotic expan-
sions

n 0 1 r
) Su(2) ~ n'(niz o)+ 5 (;) U, (2), and
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e\ " 0 1 r
(6) Ta(z) ~ n! —> ¢s(z) — 2, —) U,(2).
nz r—o \ 7
If 2= —1, (5) reduces to Copson's series. Ramanujan’s approxima-

tion for S,(1) is, in view of (5), a considerably more singular result
than it would otherwise appear.
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ON THE LOCAL LINEARIZATION OF
DIFFERENTIAL EQUATIONS!

PHILIP HARTMAN

1. Consider the autonomous system of real, nonlinear differential
equations

(1.1) &’ = Ex + F(x), where F([x|)=o(|x|)as x— 0,

x is a (Euclidean) vector, F(x) a smooth vector-valued function of «,
and E a constant matrix with eigenvalues ey, e, - - - satisfying

(1 . 2) Ree; # 0.
Let the solution £(¢, x) of (1.1) starting at x for =0 be written as
(1.3) Tt: xt = £(¢, 2) = eFtx + X(¢, %),

where X (¢, x) =o([ x|) as x—0 (for fixed #). Thus if T*is considered
as a map x—x¢, for fixed ¢, the composition rule

(1.4) T'Te = Tt

is valid for small |x|. Correspondingly, the linear system
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