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Throughout this discussion S will denote a compact connected

topological semigroup and E will denote the set of idempotents of S.

The problem to be considered concerns a question posed by Professor

A. D. Wallace. In [l], Wallace proves that if 5 has a left unit, if I

is a closed ideal of S, and if F = Q or if F is a closed left ideal of S,

then HniS)^HniiyJL) for all integers n, where HniA) denotes the

wth Alexander-Cech cohomology group of A with coefficients in an

arbitrary but fixed group G. If 5 is assumed to have both a left zero

and a left unit, then it follows that each closed left ideal L, of 5 is

acyclic; that is, HpiL)=0 for all p^l. A dual statement holds for

closed right ideals if S has a right unit and right zero. A generaliza-

tion of the case in which 5 has a left, right, or two-sided unit, is to

require that S=ES, S=SE, or S = ESE, respectively, and Wallace

has asked : "If S has a zero, are closed right or left ideals of 5 necessar-

ily acyclic in the more general situation?" [3]. A negative answer to

this question is given here by way of examples, and a theorem is

proved giving a necessary and sufficient condition for closed right

ideals of 5 to be acyclic, assuming S = ESE and 5 has a zero. Follow-

ing the proof of this theorem is an example of a semigroup not satisfy-

ing this condition.

The above-mentioned example shows that even though 5 is acyclic,

it is not necessarily true that all closed right ideals of 5 are acyclic.

Thus the question remains as to whether S is acyclic if S = ESE and

S has a zero [3]. Wallace proves in [2] that for such a semigroup S,

H1iS) = 0, however, an example is given here of a semigroup 5 with

zero, S = ESE and H2iS)=G for all groups G, showing that this

question also has a negative answer. Two further examples are in-

cluded in this paper which show what can occur if one only assumes

that S = SE, or S = ES. One example is of a semigroup 5 with zero,

S=SE and HliS)=G for all groups G and the other is an example of a

semigroup 5 with zero and left unit and 5 contains a closed right

ideal R with IP(R)^G.
Definition. Let F be a semigroup, aE T and Rio) the closed right

ideal of T generated by ex. Then a is said to be right codependent on
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T if for any integer »àl, H»(T) =0 implies that Hn(R(a))=0.

Theorem. Let S be a compact connected semigroup with zero and

S = ESE. A necessary and sufficient condition that each closed right ideal

of S be acyclic is that each a in S be right codependent on S.

The proof of this theorem depends on the following two lemmas.

The proofs of these lemmas are paraphrases of the proof of the main

theorem in [2] and will be omitted.

Lemma 1. Let S be a compact connected semigroup with zero and

S = ES. Let n be a fixed integer n^2. If Hn~1(R) = 0 for each closed

right ideal RES, then Hn(S)=0.

Lemma 2. Let S be a compact connected semigroup with zero and

S=SE. Let n be a fixed integer, n ^ 1. If for each aES, Hn(aS) = 0 and

if for each closed subset A ES, Hn~l(AS)=0, then Hn(R) = 0 for each

closed right ideal RES. (For n=l, reduced groups are to be used.)

Proof of theorem. First assume that each a in 5 is right code-

pendent on 5. The proof of sufficiency will be by induction on n.

Let n=l. From [2], H1(S)=0, hence it follows that H1(aS)=0 for

each a in S since R(a)=aS and each a is right codependent on S.

Each closed right ideal RE S is connected, therefore H°(R, r)=0 lor

each rER- Thus, using reduced groups, it follows from Lemma 2 that

H1(R)=0 for each closed right ideal RES.

Assume now that Hk~1(R)=0 for each closed right ideal R of 5

and integer k^2. Then by Lemma 1, H*(S) =0, hence Hk(aS)=0 lor

each aES. Applying Lemma 2, it follows that Hk(R)=0 where R

is a closed right ideal of S. This completes the proof of sufficiency.

If each closed right ideal of S is acyclic, then Hn(aS) =0 for each

aES, integer «^1 and coefficient group G since aS is a closed right

ideal. Also R(a)=aS for each aES so that it is trivially true that

each a in S is right codependent on 5 which completes the proof of

the theorem.

In the following examples, let 1= [0, l] denote the real unit inter-

val and for x and y in I let :

x A y = minimum of x and y,

x V y = maximum of x and y,

xy = real product of x and y.

Example 1. This is an example of a compact connected semigroup

S with zero, S = ESE, S is acyclic and there exists an element p in 5

with Hl(pS)Ç=G for all groups G. This example shows that there exist
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semigroups with zero such that each element is not right codependent

on S. The topological space of 5 is a two-cell with three closed inter-

vals, Ii, I2, and I3, issuing from a common point z0, on the boundary,

B, oí the two-cell. This point z0 is the zero of 5 and pEB\z<¡. By con-

struction pS = B and B2 = Zo- In this example, E= {ei, e2, e3, z0} where

e< is the free endpoint of I,.

Example 1 is constructed as follows. Let {a, b, c, d,d} be a discrete

space consisting of five elements. Define spaces A, B, C, D and So as

follows:

A=aXl, B = bXl, C=cXl, D = dXIXI, each with the product
topology and So = AyJBVJCVJD\j{d} with the topology on So given

by the union of the topologies on A, B, C, D and {(?}. Define the

product pq for p and q in So by:

id, ixAy)r, ixVy)), if p=id, x, y)ED, q=(a, r)EA,

id, (x\/y), (xAy)r), if p=(d, x, y)ED, q=(b, r)EB,

(b, rs), iip=(a, r)EA, or p=(b, r)EB and q=(b, s)EB,

pq = ■ (a, rs), if p=(b, r)EB, or p=(a, r)EA and q=(a,s)EA,

(d, xr, yr), if p=(c, r)EC and q=(d, x, y)ED,

(c, rs), if p=(c, r)EC and q=(c, s)EC,

ß   otherwise.

By the definition of the topology on So, multiplication is continuous

and associativity is checked by direct computation. Let Fo =

{(a, 1), (b, 1), (c, 1), d}. Then E0 is a set of idempotents in S0 and

the claim is made that So = £oSoF0. This is true since (a, 1) is a two-

sided unit for A and a right unit for (dX {(x, y) : xúy}) ', (b, 1) is a

two-sided unit for B and a right unit for (dX {(x, y): x^y}) ; (e;, 1) is

a two-sided unit for C and a left unit for D; and 92 = 6.

Consider now, I0 = (dX {o} Xl)VJ(dXlX {0})U{ (a, 0), (b, 0),
(c, 0), d}. By direct computation it can be shown that this closed

subset of So is a two-sided ideal of So. Let S=S0/Io be the Rees quo-

tient of So by Jo. Then S is a compact connected semigroup with

zero and it is clear that S is acyclic. Also the condition So = FoS0Eo

implies that S = ESE where E is the set of idempotents of S.

Let p = (d, 1, 1). Then pS=((d, I, l)S0WI0)/Io= ((dX/X {l})
U(dX {1 ] XI)^JIo)/Io so that pS is homeomorphic to a one-sphere

and therefore H1(pS)^G for all groups G.

Example 2. This is an example of a compact connected semigroup

S with zero, S = ESE and H2(S)^G for all coefficient groups G. The

topological space of this semigroup is a two-sphere with four closed

intervals, Iit i=l, 2, 3, 4, issuing from a common point, Zi, on the two-
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sphere. The point zx is a zero for 5 and if e¿ denotes the free endpoint

of /,-, then E = {ex, e2, e3, eit Zx} and multiplication in S has the follow-

ing properties: (Let Sx denote the two-sphere in 5; Cx and C2 the two

great circles in Sx through Zx; Hx and H2 the closed hemispheres

determined by Cx; and Pi, P2 the closed hemispheres determined by

C2.) S2x = zx; exS = HxyJh; e2S = H2\JI2; 5e3 = PiW/3; Sei = P2VJh.

Hence exSi^e2S =Cx is a closed right ideal of 5 with nontrivial co-

homology in dimension one. Similarly, Se3n.Se4 = C2 is a closed left

ideal of S.
S is constructed in the following way: Let A= {a, b, c, d, e, 9} be

a discrete space with six elements. Let A0 = A\{e, 9} and let

T=(NoXI)yJ(eXlXI)yj{9} with the topology on T given by the

union of the topologies of its subsets. For x and y in [O, l] define

a(x, y) = (xAyA(l—x) A(l—y)) and define the product^ for p and

g in T by :

(e, (xA(l-y))-ra(x, y), (y/\(l-x))-ra(x,y)), p=(a,r)EA,

q=(e, x, y)ESo, =eXlXI

(e,(x\J(l-y))+ra(x,y), (y\/(l-x))+ra(x, y)), p=(b,r)EB,

q=(e, x, y)ESo

(a, r-\-s — rs), p=(a, r)EA and q=(a, s)EA or q=(b, s)EB,

pq = ■ (b, r+s — rs), p=(b, r)EB and q=(a, s)EA or q=(b, s)EB,

(e, l-s+(x\/y)s, (xAy)s), p=(e,x,y)ESo, q=(c,s)EC,

(e,(x/\y)s, l-s+(x\/y)s), p=(e, x, y)ES0, q=(d,s)ED,

(d, rs), p=(c, r)EC or p=(d, r)ED and q=(d, s)ED,

(c, rs), p=(d, r)ED or p=(c, r)EC and q=(c, s)EC,

9   otherwise.

By the definition of the topology on T, it is clear that multiplica-

tion is continuous since it involves continuous operations of real

numbers. By direct computation it is seen that multiplication is also

associative and therefore Pis a compact semigroup. LetS;, i=l, 2, 3,4,

subsets of eXlXl be defined by:

Sx = {(e, x, y) : 0 á x ^ y g x + y = l},

52 = {(e, x, y): 0 -^ x -^ y S l û x + y},

53 = {(e,x,y):0 ûyux^l^x + y},

Si = {(e, x, y): 0 ú y Ú x ^ x + y ^ l},

and letEo={(a,0), (b,0), (c, 1), (d, 1), 9}. EQ is a set of idempotents
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in T and the claim is made that T = EoTE0. This follows from the

following equalities:

a X I = (a, 0)(a X I)(a, 0); b X I = (b, 0)(b X I)(b, 0); cX I
= (c, l)(cXl)(c, 1); dXl=(d, l)(dXI)(d, 1); 02 = 0 and eXlXI
= \j{Si:i=l, 2, 3, A}=ia, 0)S,(e¿, 1)U(6, 0)5,(d, 1)W(&, 0)S3(c, 1)
W(a, 0)S4(c, 1). This proves that T = EoTEo as claimed.

Now let h= {ia, 1), (&, 1), (c, 0), id, 0), 0} W(êXF(/X/)) where

FilXI) denotes the boundary of IXI in the Euclidean plane. It can

be shown that this closed subset of F is a two-sided ideal of T, hence

S= F/F) is a compact connected semigroup as described above. Also

S = ESE, since T = E0TEo and S has a zero.

Example 3. This example is of a semigroup S=SE which is com-

pact connected, has a zero and H1iS)^G for all groups G. S is a sub-

semigroup of the semigroup in Example 1 and the topological space

of S is a circle with two closed intervals issuing from a common point

of the circle.
In the terminology of Example 1, consider the following closed

subsemigroup, F, of S0:

T=AVBVJidXFiIXl))V{6}. Then T=Tia, 1)UF(&, 1)U{0}
so that T= TEi where £i is the set of idempotents in F. Let h

= {ia, 0), (b, 0), 0} U(eTX ¡O} X/)U(dX/X {o}). Then h = FfVo is
a closed ideal of F and S=T/Ii is a compact connected semigroup

with zero and S=SE. Clearly S is topologically as described above,

so that ii"1 ($)=£■

Example 4. This final example is of a semigroup S with zero and

left unit and S contains a closed right ideal R such that HliR)=G,

for all groups G.

Let S=i{0}XlXI)yJilX{0} XI) and define multiplication in

S by (x, y, z)(r, s, t) = (xr, xs, zt). S can be represented by the follow-

ing matrix semigroup:

x y 0

0 0 0

0    0    z

: (*, y,z)GS

so that multiplication in S is continuous and associative. Clearly

(0, 0, 0) is a zero for S and (1, 0, 1) is a left unit for S. By the defini-

tion of multiplication it follows that any subset of ({o} XIXI) con-

taining ({0}x{0}xF) is a right ideal of S and, in particular,

F = the boundary of ({OJXlXFj is a closed right ideal of S and

H1iR)=G for all coefficient groups G.

In these four examples it might be noted that the set of idem-
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potents in each semigroup was a finite discrete set. It might be of

interest to know if there exists a semigroup S = ESE which is compact

connected, has a zero, is not acyclic and such that the set of idem-

potents is connected.
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CONFORMAL VECTOR FIELDS IN COMPACT
RIEMANNIAN MANIFOLDS

T. K. PAN

1. Introduction. Let Vn be a compact Riemannian manifold of

dimension n and of class C3. Let ga(x) of class C2 be the coefficients

of the fundamental metric which is assumed to be positive definite.

Let Ty be the Christoffell symbol, 2?«/»* the curvature tensor and Ra

the Ricci tensor.

Let d) be an arbitrary scalar invariant, £' an arbitrary vector field

and £i,¿2. • •«, an arbitrary anti-symmetric tensor field of order p, all of

class C2 in Vn. We shall make use of the following results obtained by

S. Bochner and K. Yano [l, pp. 31, 51, 69]:

(1.1)  (A(j>^0 everywhere in Vn)=$(<p = constant everywhere in Vn).

(1-2) f ?,idv = 0.
«/ yn

(1.3) f  (Ri^i + ft,- ft« - ft« fty)¿s = 0.
«/ yn

(1.4) f (F{£«!«,...«,} +Zii*-i>'iiit...ip,i-Zii*--i',iVit...ip,i)dv=Q
*/ yn

where
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