EXAMPLE OF A NONACYCLIC CONTINUUM SEMIGROUP
S WITH ZERO AND S=ESE

ANNE L. HUDSON!

Throughout this discussion S will denote a compact connected
topological semigroup and E will denote the set of idempotents of S.
The problem to be considered concerns a question posed by Professor
A. D. Wallace. In [1], Wallace proves that if S has a left unit, if I
is a closed ideal of S, and if L=[] or if L is a closed left ideal of .S,
then H*(S)=~H"(I\UL) for all integers n, where H*(4) denotes the
nth Alexander-Cech cohomology group of 4 with coefficients in an
arbitrary but fixed group G. If S is assumed to have both a left zero
and a left unit, then it follows that each closed left ideal L, of S is
acyclic; that is, H?(L)=0 for all p=1. A dual statement holds for
closed right ideals if S has a right unit and right zero. A generaliza-
tion of the case in which S has a left, right, or two-sided unit, is to
require that S=ES, S=SE, or S=ESE, respectively, and Wallace
has asked: “If S has a zero, are closed right or left ideals of .S necessar-
ily acyclic in the more general situation?” [3]. A negative answer to
this question is given here by way of examples, and a theorem is
proved giving a necessary and sufficient condition for closed right
ideals of S to be acyclic, assuming S= ESE and S has a zero. Follow-
ing the proof of this theorem is an example of a semigroup not satisfy-
ing this condition.

The above-mentioned example shows that even though S is acyclic,
it is not necessarily true that all closed right ideals of .S are acyclic.
Thus the question remains as to whether S is acyclic if S=ESE and
S has a zero [3]. Wallace proves in [2] that for such a semigroup S,
H'(S) =0, however, an example is given here of a semigroup S with
zero, S=ESE and H?*(S)=G for all groups G, showing that this
question also has a negative answer. Two further examples are in-
cluded in this paper which show what can occur if one only assumes
that S=SE, or S=ES. One example is of a semigroup S with zero,
S=SE and H(S)=2G for all groups G and the other is an example of a
semigroup S with zero and left unit and S contains a closed right
ideal R with HY(R)=G.

DEFINITION. Let T be a semigroup, a T and R(a) the closed right
ideal of T generated by a. Then ¢ is said to be right codependent on
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T if for any integer n=1, H*(T) =0 implies that H*(R(a)) =0.

THEOREM. Let S be a compact connected semigroup with zero and
S=ESE. A necessary and sufficient condition that each closed right ideal
of S be acyclic is that each a in S be right codependent on S.

The proof of this theorem depends on the following two lemmas.
The proofs of these lemmas are paraphrases of the proof of the main
theorem in [2] and will be omitted.

LeEMMA 1. Let S be a compact connected semigroup with zero and
S=ES. Let n be a fixed integer n=2. If H*Y(R)=0 for each closed
right ideal RC.S, then H*(S)=0.

LEMMA 2. Let S be a compact connected semigroup with zero and
S=SE. Let n be a fixed integer, n=1. If for each a &S, H*(aS) =0 and
if for each closed subset A CS, H1(AS)=0, then H*(R)=0 for each
closed right ideal R CS. (For n=1, reduced groups are to be used.)

Proor oF THEOREM. First assume that each a in S is right code-
pendent on S. The proof of sufficiency will be by induction on .
Let n=1. From [2], H!(S) =0, hence it follows that H'(aS)=0 for
each a in S since R(a)=aS and each @ is right codependent on S.
Each closed right ideal RC.S is connected, therefore H(R, r) =0 for
each r&R. Thus, using reduced groups, it follows from Lemma 2 that
H!(R)=0 for each closed right ideal RCS.

Assume now that H*~1(R)=0 for each closed right ideal R of S
and integer k=2. Then by Lemma 1, H*(S) =0, hence H*(a.S) =0 for
each a&S. Applying Lemma 2, it follows that H*(R)=0 where R
is a closed right ideal of S. This completes the proof of sufficiency.

If each closed right ideal of S is acyclic, then H*(aS) =0 for each
aES, integer n=1 and coefficient group G since aS is a closed right
ideal. Also R(a)=aS for each ¢ €S so that it is trivially true that
each ¢ in S is right codependent on .S which completes the proof of
the theorem.

In the following examples, let I= [0, 1] denote the real unit inter-
val and for x and y in I let:

% /\ y = minimum of x and y,
£\ y = maximum of x and ¥y,
xy = real product of x and y.

ExaAMPLE 1. This is an example of a compact connected semigroup
S with zero, S=ESE, S is acyclic and there exists an element p in S
with H'(pS)=G for all groups G. This example shows that there exist
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semigroups with zero such that each element is not right codependent
on S. The topological space of .S is a two-cell with three closed inter-
vals, I, I;, and I, issuing from a common point 2o, on the boundary,
B, of the two-cell. This point 2, is the zero of .S and p EB\z,. By con-
struction pS= B and B2?=23,. In this example, E= {el, e, €3, zo} where
e; is the free endpoint of I..

Example 1 is constructed as follows. Let {a, b, ¢ d, 0} be a discrete
space consisting of five elements. Define spaces 4, B, C, D and .S as
follows:

A=aXI, B=bXI, C=cXI, D=dXIXI, each with the product
topology and Sy=4\UB\UC\UD\U {8} with the topology on S, given
by the union of the topologies on 4, B, C, D and {0} Define the
product pq for p and ¢ in S, by:

(@, xA\y)r, xVy), if p=(d, x, ) ED, g=(2, N EA4,
(@, (x\Vy), (xA\9)1), if p=(d, %, y)ED, ¢=(b, r)EB,

(8, rs), if p=(a,r)E 4, or p=(b, r) EB and ¢= (b, s)EB,
g = {(a,rs),if p=(b,7)EB, or p=(a,7)E 4 and ¢=(a,5)E 4,
d, xr, yr), if p=(c, r)EC and ¢=(d, %, y) E D,

(c, 1s), if p=(c, )EC and ¢=(c, s)EC,

6 otherwise.

By the definition of the topology on S,, multiplication is continuous
and associativity is checked by direct computation. Let Eo=
{(a, 1), (b, 1), (¢, 1), 6}. Then E, is a set of idempotents in Sy and
the claim is made that Sy=E,S¢E,. This is true since (a, 1) is a two-
sided unit for 4 and a right unit for (dX {(x, ¥):x<y}); (6, 1) isa
two-sided unit for B and a right unit for (@ X { (x, ) : x=3}); (¢, 1) is
a two-sided unit for C and a left unit for D; and 02=8.

Consider now, Io=(dX {0} XN)\U@XIX{0})U{(a, 0), (b, 0),
(¢, 0), 8}. By direct computation it can be shown that this closed
subset of Sy is a two-sided ideal of Sy. Let S=S;/I, be the Rees quo-
tient of Sy by I,. Then S is a compact connected semigroup with
zero and it is clear that S is acyclic. Also the condition So=E¢SoEg
implies that S=ESE where E is the set of idempotents of S.

Let p=(d, 1, 1). Then pS=((d, 1, 1)S\JIo)/Io=(dXIX{1})
U@dX { 1} XI)\UI,) /I, so that S is homeomorphic to a one-sphere
and therefore H!(p.S)=G for all groups G.

ExampLE 2. This is an example of a compact connected semigroup
S with zero, S=ESE and H?(S)=<G for all coefficient groups G. The
topological space of this semigroup is a two-sphere with four closed
intervals, I;,7=1, 2, 3, 4, issuing from a common point, 2;, on the two-
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sphere. The point z; is a zero for .S and if e; denotes the free endpoint
of I;, then E= {el, e, €3, €4, zl} and multiplication in S has the follow-
ing properties: (Let .S; denote the two-sphere in S; C;, and C. the two
great circles in S; through 2;; H; and H, the closed hemispheres
determined by Ci; and P;, P, the closed hemispheres determined by
Cz.) Sf=zl; 61S=H1U11; 625=H2U12; 563=P1UI3; Se4=P2UI4.
Hence e1.SMeS=C; is a closed right ideal of S with nontrivial co-
homology in dimension one. Similarly, SesMN\Ses=C: is a closed left
ideal of S.
S is constructed in the following way: Let N= {a, b, ¢, d, e, 0} be
a discrete space with six elements. Let Ny= N\{e, 0} and let
T=(NoXI)\U(eXIXI)\U{0} with the topology on T given by the
union of the topologies of its subsets. For x and y in [0, 1] define
alx, y) =@ Ay/A\{1—x) A(1—9)) and define the product pq for p and
gin T by:
[(e’ (x/\(l _y)) —ra(x, y), (y/\(l _x)) —m(x, y)): P= ((Z, f)EA,
q= (e: X, 3’)65'0: =6XIXI
(e, (x\V(1=9))+ralx, y), BV (1—=2x))+ra(z, v)), p=(b, r)EB,
q=(e, X, )’)ESO
(d, r+s—rs), P=(d, f)EA and q=(a) S)EA or q=(b7 S)EB,
pq = {(d, r+s—rs), p=(b, )& B and ¢=(a, s)E 4 or ¢=(b, s)EB,
(e’ 1—5+(x\/y)3, (x/\)’)s), P= (6, X, y)ESO) q=(0, S)EC’
(e) (x/\y)S, 1_5+(xvy)5)» p= (e, X, y)ESO; q= (d’ s)ED,
@, rs), p=(c,r)EC or p=(d,r)ED and ¢=(d, s)E D,
(c, rs), p=(d,ED or p=(c, r)SC and ¢g=(c, s)EC,
6 otherwise.

By the definition of the topology on T, it is clear that multiplica-
tion is continuous since it involves continuous operations of real
numbers. By direct computation it is seen that multiplication is also
associative and therefore I"isa compact semigroup. Let S;,7=1, 2, 3, 4,
subsets of e XIXI be defined by:

Si={le,%):0sesysat+ysi)
Si={(e,%:0sesys1Za+y},
Si={(e,%):0=yss=1=5a+y},
Si={(e,%):0sysxsx+y=s1},

and let Ey= {(a, 0), (6, 0), (¢, 1), (@, 1), 0}. E,is a set of idempotents
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in T and the claim is made that T'=E(TE,. This follows from the
following equalities:

aXI=(a 0)(aXID@ 0;0XI=1(0 00XIEOb 0;cXI
=(c, 1)(cXID)(c, 1); dXI=(, 1)(@XI)(d, 1); 6*=0 and eXIXI
=U{Sii=1, 2, 3, 4} = (g, 0)Si(d, NU(b, 0)S:(d, 1)\U(b, 0)Ss(c, 1)
U(a, 0)Si(c, 1). This proves that T'=E(TE, as claimed.

Now let Io={(a, 1), (b, 1), (¢, 0), (d, 0), 8} \U(e X F(IXI)) where
F(I'XI) denotes the boundary of I X[ in the Euclidean plane. It can
be shown that this closed subset of T is a two-sided ideal of T, hence
S=T/I,is a compact connected semigroup as described above. Also
S=ESE, since T=E,TE, and S has a zero.

ExaMmpLE 3. This example is of a semigroup S=SE which is com-
pact connected, has a zero and H*(S)=G for all groups G. S is a sub-
semigroup of the semigroup in Example 1 and the topological space
of Sis a circle with two closed intervals issuing from a common point
of the circle.

In the terminology of Example 1, consider the following closed
subsemigroup, T, of So:

T=AUBUAXFIXI)\U{8}. Then T=T(a, 1)UT(b, 1)U {6}
so that T=TE; where E, is the set of idempotents in T. Let I;
={(a, 0), (5,0),0}U@X {0} X)\U(@XIX{0}). Then I;=TNI,is
a closed ideal of T and S=1T/1I; is a compact connected semigroup
with zero and S=SE. Clearly S is topologically as described above,
so that H(S)=G.

ExaMpPLE 4. This final example is of a semigroup .S with zero and
left unit and S contains a closed right ideal R such that H'(R)=G,
for all groups G.

Let S=({0} XIX)\U(IX{0} XI) and define multiplication in
Sby (x, y, 2)(r, s, t) = (xr, x5, 2t). S can be represented by the follow-
ing matrix semigroup:

x y 0
0 0 O}: (x,9,2€ES
0 0

2

so that multiplication in S is continuous and associative. Clearly
(0, 0, 0) is a zero for S and (1, 0, 1) is a left unit for S. By the defini-
tion of multiplication it follows that any subset of ({0} XIX1I) con-
taining ({0} X {0} XI) is a right ideal of S and, in particular,
R=the boundary of ({0} XIXI) is a closed right ideal of S and
H'(R)=G for all coefficient groups G.

In these four examples it might be noted that the set of idem-
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potents in each semigroup was a finite discrete set. It might be of
interest to know if there exists a semigroup S= ESE which is compact
connected, has a zero, is not acyclic and such that the set of idem-
potents is connected.
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CONFORMAL VECTOR FIELDS IN COMPACT
RIEMANNIAN MANIFOLDS

T. K. PAN

1. Introduction. Let V™ be a compact Riemannian manifold of
dimension 7 and of class C® Let g;;(x) of class C? be the coefficients
of the fundamental metric which is assumed to be positive definite.
Let T}, be the Christoffell symbol, R;u the curvature tensor and R;;
the Ricci tensor.

Let ¢ be an arbitrary scalar invariant, £ an arbitrary vector field
and £;4,...5, an arbitrary anti-symmetric tensor field of order p, all of
class C?in V" We shall make use of the following results obtained by
S. Bochner and K. Yano [1, pp. 31, 51, 69]:

(1.1) (A¢p=0 everywhere in V*)=(¢ =constant everywhere in V*).

1.2 tidv = 0.

(1.2) fvf’ v

(1.3) (R + £, 8, — £, 8,))dv = 0.
Vﬂ

(1‘4) f (F{$51i2~ "ip} + E“z.“ip'igiiz"‘fp!‘ — gl E t'z-“ipu')dv:O
144

where
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