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Introduction. In [7] and [8] we have determined the isomorphisms

of the endomorphism rings of two special classes of torsion-free

modules. In [7] the modules were free, over principal left ideal do-

mains, and the isomorphism was always induced by a semi-linear

transformation of the modules. In [8] the ring of scalars was a com-

plete discrete valuation ring, but no further restriction was placed

on the modules. Except for the special case when both modules are

divisible, the same result holds as in [7], In each case a key point in

the argument is that a certain indecomposable direct summand can

be shown to be cyclic. Even for ordinary torsion-free abelian groups,

the abundance of the indecomposable ones makes it impossible to

prove that isomorphism of the endomorphism rings implies isomor-

phism of the underlying groups. We show first that for any cardinal

number c, there exist homogeneous completely decomposable groups

G and H of rank c which are not isomorphic, but have isomorphic

rings of endomorphisms. This makes it clear that strong restrictions

must be placed on the class of groups considered if it is hoped that

the ring isomorphism is to be induced by a group isomorphism. In

particular, homogeneity coupled with separability or complete de-

composability is not sufficient.

We are, however, able to generalize the results of [7] to a class of

what we call locally free modules A over principal left ideal domains

F. A locally free abelian group (F is the ring of integers) is just a

homogeneous separable group of null type [6, p. 208]. This latter

class of groups includes the complete direct sum of infinite cyclic

groups, as well as all its subgroups [4, p. 176]. For example, the set

of all bounded sequences of integers is such a group.

We also determine (Theorem B) which semi-linear transformations

induce the same ring isomorphisms. The results are similar to the

vector space case considered in [2], and apply to the endomorphism

rings of locally free modules as well as the torsion-free modules of [8].

1. An example and some preliminaries. Let Gx be the additive

group of integers, and let Hx be the additive group of those rational
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numbers which when written in lowest terms have square free de-

nominators. Now Gi has the type (0, 0, 0, • • • ) while Hi has type

(1, 1, 1, • • • )• Since these are distinct types, Gi and Hi are not iso-

morphic [4, Theorem 42.2, p. 149], The endomorphism ring of Gi

is isomorphic to the ring of integers [4, Example 1, p. 211 ]. The endo-

morphisms of Hi consist of multiplications by rational numbers r

[4, Examples 3, 4, p. 211]. But only those rationals r are permissible

for which rHiÇiHi. Hence r when written in lowest terms can contain

no primes in its denominator. Thus the endomorphism ring of Hi is

also isomorphic to the ring of integers.

Let c be any finite or infinite cardinal, and let G and H be the

direct sums of c copies of Gi and Hi respectively. Then G and H are

nonisomorphic homogeneous completely decomposable groups of rank

c [4, Theorem 46.1]. The endomorphism rings of G and H are, how-

ever, isomorphic [4, Theorem 55.1],

Hence it does not follow from the isomorphism of the endomor-

phism rings that the underlying groups are isomorphic, even if one

assumes that the groups in question are homogeneous, and also

separable or even completely decomposable (cf. [4, Problem 43,

p. 232]). (In the case of completely decomposable groups the argu-

ments of [7, Lemma 2.2] will, however, allow the conclusion that the

ranks are equal. Hence if the groups are assumed homogeneously

completely decomposable and of the same type, then the group iso-

morphism follows from the ring isomorphism.)

Let iF, A) be a torsion-free module A over a principal left ideal

domain F. We shall call iF, A) locally free if each finite subset of A

is contained in a free direct summand. It is clear that we may assume

that this direct summand has finite rank.

We shall follow the definitions and notations of [7]. In particular,

£(F, A) is the endomorphism ring of iF, A) and EoiF, A) consists of

the endomorphisms of finite rank. Our result is as follows.

Theorem A. Let iF, A) and (G, B) be locally free modules over prin-

cipal left ideal domains. If er is an isomorphism of EiF, A) upon

£(G, B) then there exists a one-to-one semi-linear transformation ca of

(F, A) upon (G, B) such that ■n° = co~1riù)for each r]EE(F, A).

We shall prove a few preliminary results and then show how to

modify the arguments of [7] to get the desired result. If the rings of

scalars were assumed both left and right principal ideal domains, some

of the arguments would be simpler since over such rings, finitely gen-

erated, torsion-free modules are all free [5, Theorem 18, p. 44],
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Lemma 1.1. Let (F, A) be locally free, and S, a submodule of finite

rank. Then S is contained in a free direct summand of finite rank and is

thus itself free of finite rank.

Proof. Let xx, x2, ■ ■ ■ , xn be a maximal linearly independent set

in 5. Then y*=, FxiQQ, a free direct summand of finite rank. If

xES, then rxE ¿Jt-i Fx¿C<2 for some r^O in F. But Q being a direct

summand, is pure, so xEQ- Hence S^Q, and S is free as a submodule

of a free module [3, Theorem 5.3, p. 13].

It now follows easily that £o(F, ^4) is a two-sided ideal of E(F, A).

Lemma 1.2. If (F, A) is locally free, and S is a direct summand of A,

then (F, S) is locally free.

Proof. Let A =S®Q with alt a2, • ■ ■ , anES. Then by hypothesis

the atEW, with A = W@Z and W free of finite rank. Now W/SCWV

£= (S + W)/S. Since W is finitely generated, the same is true of

(S-\-W)/S. But 5 is a direct summand of S-\-W, since it is a direct

summand of A. Thus (S+ W) /S is isomorphicto a submodule of S+ W,

hence to a submodule T of A. But T is finitely generated, hence of

finite rank, so free by Lemma 1.1. Therefore W/Si\W is free.

So by [4, Theorem 9.2, p. 38] S(~\W is a direct summand of W.

Hence SÍMV is a direct summand of A, since W is a direct summand

of A. This gives finally that SC\W is a direct summand of 5. This

completes the proof since the aiES, and SC\W is free as a submodule

of the free module W.

Remark. It follows from Lemma 1.2 that an indecomposable direct

summand of a locally free module must be cyclic. If the rings of

scalars F and G are assumed commutative, a proof of the theorem

could now be given by the method of [s].

2. The isomorphism theorem. In this section we shall number our

Lemmas to correspond to the similar ones proved in [7],

Lemma 2.2. Suppose E(F, A)^E(G, B) with (F, A) free of finite

rank n, and (G, B) locally free. Then (G, B) is free of rank n.

Proof. If B has finite rank, it follows from Lemma 1.1, that it is

free, so the proof would follow from Lemma 2.2 of [7]. Suppose it is

possible that B has infinite rank. Let xx, x2, - ■ ■ , xn+x be linearly

independent elements of B and imbed them in a free direct summand

P of rank m^n + l. Let yx, y2, ■ • ■ , ym be a basis of P and let

eit i= 1, 2, • • ■ , m be the projection on Gyf which annihilates the

other basis elements and the complementary summand. If /¿—>e» un-

der the isomorphism, then
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a contradiction.

Lemma 2.3. Let a be an isomorphism of E(F, A) on E(G, B), then a

induces an isomorphism of EoiF, A) on £o(G, B).

Proof. We imitate the corresponding proof in [7]. If ^4er = 5,

5ÇÇ, where Q = Ae is a free direct summand of finite rank k, by

Lemma 1.1. Then we have E(F, Ae)^EiG, Bf), where Bf is locally

free by Lemma 1.2. The result now follows from Lemma 2.2.

Lemma 2.4. Let <p be an automorphism of EiF, A) which leaves the

elements of EoiF, A) elementwise fixed. Then d> is the identity.

Proof. Let oEEiF, A). If aEA, imbed it in a free direct summand

of finite rank, and let ea be the projection on it, so that eaEEo. Then

eao-   = eao-   = (eacr)   = eao-.

Hence aer* = aeacr* = exe0cr = aer, so that o = a*.

Before the proof of the next result we recall briefly some of the

relevant notations of [7].

The set of all F-homomorphisms of A into F forms a right F-

module (the adjoint module) denoted by (A *, F). If xEA, and yEA *,

the effect of the homomorphism y on the element x is denoted (x, y).

The pair iA, A*) is dual if (x, y)=0, for all yEA*, implies x = 0. If

S is a subset of A, its annihilator in A* is the submodule S' of ele-

ments fEA*, for which (5, /)=0. If 7'Ç.l*, we similarly define T',

the annihilator of 2" in A. A submodule Q of A or A* is called closed

if Q" = iQ')' = Q. For 5 a subset of A, F(5) is the totality of p in £0

for which Sp = 0, and i(5) is the set of a in Eo for which AaQS. If

P is a subset of EoiF, A), then N(P) is the totality of x in A for

which xP = 0, and AP is the set of elements ap, for aEA, pEP-

Lemma 3.1. (a) ALiS) = S for each submodule S of A.

(b) N[RiS) ] = S if and only if S is a closed submodule of A.

Proof, (a) There exists a cyclic direct summand Fx, A = FxffiQ. If

sES, define oEEo by xer = s and Q<r = 0. Then cr£L(S), and sEALiS)

giving SQAL(S).
In particular we note that AE0 = ALiA)=A.

(b) We need only show that 04, ^4*) form a dual pair. If aEA,

a^O, imbed a in free direct summand with basis bu b2, ■ ■ • , bn. Then

ez= ¿?=i '¿i with ri?¿0, r{EF.
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Define fEA* by (&,,/) = 1, (&<,/) =0, iVl with / annihilating the

complementary summand. Then (a, f)=rl9i0 completing the proof.

The rest of the assertions of Lemma 3.1 of [7] as well as those of

Lemmas 3.2, 3.3 and 3.4 follow as before.

Lemma 3.5. Suppose r(A) ^2. If <p is an automorphism of E0(F, A)

which leaves each left ideal invariant, </> is the identity.

Proof. Let aEA be arbitrary, and contained in a direct summand

with basis bx, b2, b%, ■ ■ • , bn. Let bx = b and g be arbitrary in A. Let

ct(b, g)EEo, map b onto g, annihilate b2, • ■ • , bn as well as the com-

plementary summand. Following the arguments of [7] we have

a(b, g) =a*(b, g) if b and g are linearly independent.

Now suppose b, g are dependent so that sgEFb for some s ¿¿0

in F But then gEFb, since Fb being a direct summand is pure.

We have g = rb, r¿¿0, in F and may follow the arguments of [l,

p. 199] to conclude ct*(b, rb) =a(b, rb) so thata*(&, g) =ct(b, g) for any

gEA. If èEEo, the last paragraph of the aforementioned proof

shows 5 and S* have same effect on b = bx- It follows in the same way

that 5 and S* have the same effect on all the b{; and hence on a. Since

a is arbitrary 8 = 5*, and 0=1.

The proof of Theorem A may now be completed, by following the

arguments of [7] without change.

Theorem B. Let (F, A) and (G, B) be torsion-free modules over prin-

cipal left ideal domains, such that each possesses a cyclic direct sum-

mand, and r(A)^2. If a and r are semi-linear transformations of

(F, A) upon (G, B), then the following statements are equivalent:

(i) a and r induce the same ring isomorphism of E(F, A) upon

E(G, B),
(ii) S" = ST for each submodule S of A,

(iii)  There exists a unit g in G such that x" = gxr for each xEA.

Proof. If we assume (i), Lemma 3.4 of [7] gives us L(S°)=L(ST)

lor each submodule S of A. The proof of Lemma 3.1 (a) shows that

the existence of cyclic direct summands is sufficient for AL(S) =5 to

hold for each submodule 5. Applying this fact we have S' = ST.

Assume (ii) and let a = ar~x, a one-to-one semi-linear transforma-

tion of (F, A) onto itself. Then Sa = S for each submodule S ol A. If

X9^0 is in A, from (Fx)"= Fx, we get xa=f(x)-x, f(x)EF. We may

now follow the arguments of pp. 43-44 of [2] to conclude/(x) =f¿¿0,

is independent of x and that xa=fx lor all xEA. This depends on the

fact that r(A) e£2, and in F each pair of nonzero elements have a non-
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zero common left multiple. Now assume x^O. Since Fx= (Fx)a, there

exists í F^O in F, such that x= (¿x)"=/(íx) = if i) -x. Since A is torsion-

free/£=l. In a ring without proper zero divisors this implies tf=l

so that/ is a unit of F. But x" = (/x)T =/Txr = gxr, with g, a unit of G.

Assuming (iii) we have xa=fx for each x£^4, where a = 0T_1 and

f = g. Let riEEiF, A). Then

(*»)ij = f»ij = fxr,) = ixr,)",

so that ar) = r]a for each t/£E(F, A). This says crT_1r; = ?7crr_1 which

implies T_1?7T = er~177e7 for each rjEEiF, A) completing the proof.
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