ON A CUBIC CONGRUENCE IN THREE VARIABLES. II1

L. J. MORDELL

Let p be a prime and let f(x, y, z) be a cubic polynomial whose coefficients are integers not all $\equiv 0 \pmod{p}$, and so are elements of the Galois field G(p). We have the

Conjecture. Suppose that f(x, y, z) cannot be expressed as a cubic polynomial in two independent variables, and that f(x, y, z) is irreducible in any algebraic extension of G(p). Then the number N of solutions of the congruence

(1)
$$f(x, y, z) \equiv 0 \pmod{p}$$

for large p satisfies

$$(2) N = p^2 + O(p),$$

where the constant implied in O is independent of the coefficients of f(x, y, z) and of p.

A well-known case when (2) holds is²

(3)
$$ax^3 + by^3 + cz^3 + d \equiv 0, \qquad abcd \not\equiv 0.$$

Another nontrivial instance is given by [1]

$$(4) z^2 \equiv f(x, y) + k,$$

where

$$f(x, y) = ax^3 + bx^2y + cxy^2 + dy^3$$

is not a multiple of a perfect cube.

It is not without interest to find other instances for which (2) holds. When I communicated (4) to Professor Davenport, he wrote (October 27, 1961) that (2) also holds for

$$(4a) f(x, y, z) \equiv k,$$

where f(x, y, z) is the general ternary cubic form.

I prove now the

THEOREM. The result (2) holds for the congruence

$$z^2 \equiv f(x, y) + lx + my,$$

Presented to the Society, November 17, 1962; received by the editors April 20, 1962.

¹ This work was supported in part by the National Science Foundation, Washington, D. C.

² We omit mod p, hereafter in congruences.

where

$$f(x, y) = ax^3 + bx^2y + cxy^2 + dy^3 \not\equiv g(lx + my)^3.$$

Proofs of such results are of two kinds. One is at a completely elementary level, but the other makes use of Weil's theorem on the number of solutions of a polynomial congruence mod p. My proof of (4) was elementary. Professor Davenport in his letter gave a nonelementary proof of (4) and (4a). I give two proofs of the theorem. They both use Weil's results, but the second one, though shorter than the first, requires perhaps more detailed knowledge than the first.

A linear transformation shows that we can replace (5) by

$$(6) z^2 \equiv f(x, y) + kx.$$

We note that when $p \equiv 3 \pmod{4}$, $N = p^2$. For clearly

$$N = \sum_{x,y} \left(1 + \left(\frac{f(x,y) + kx}{p} \right) \right),$$

where the inner bracket denotes the quadratic character (mod p). This changes sign when x, y are replaced by -x, -y, and so the result follows.

Suppose, hereafter, that $p \equiv 1 \pmod{4}$. We first dispose of the trivial case when $f(x, y) = jx(gx + hy)^2$. On replacing gx + hy by y, (6) becomes $z^2 \equiv jxy^2 + kx$. This congruence has obviously $p^2 + O(p)$ solutions.

Denote by N(k) the number of solutions of (6). Then $N(k) = N(kt^4)$ where $t \neq 0$ is any integer. For on putting $t^2x \equiv X$, $t^2y \equiv Y$, $t^3z \equiv Z$, in (6),

$$Z^2 \equiv f(X, Y) + kt^4X$$
.

Hence N(k) depends only on the biquadratic character of $k \pmod{p}$, and so as k takes all values, $0 \le k < p$, N(k) assumes five values, one N_0 , corresponding to k=0, and four others, say N_1 , N_2 , N_3 , N_4 . In (6), the number of solutions with $x \equiv 0$ is p, and so we enumerate hereafter only solutions with $x \not\equiv 0$. Consider now (6) as a congruence in four variables $x \not\equiv 0$, y, z, k. Then we have

(7)
$$N_0 + \frac{p-1}{4}(N_1 + N_2 + N_3 + N_4) = p^2(p-1).$$

The left-hand side is the number of solutions corresponding to $k=0, 1, \dots, p-1$. The right-hand side is the number when we take values of $x \neq 0, y, z$, since these define k uniquely. Next

(8)
$$N_0^2 + \frac{p-1}{4}(N_1^2 + N_2^2 + N_3^2 + N_4^2) = p^5 + E,$$

where p^5+E is the number of solutions of

(9)
$$\frac{z^2 - f(x, y)}{x} \equiv \frac{z_1^2 - f(x_1, y_1)}{x_1}$$

in x, y, z, x_1 , y_1 , z_1 where $xx_1 \not\equiv 0$.

We show that each side of (8) represents the number of solutions of

$$z^{2} \equiv f(x, y) + kx, \qquad z_{1}^{2} \equiv f(x_{1}, y_{1}) + kx_{1}.$$

The left-hand side gives the number for $k=0, 1, 2, \dots, p-1$, and the right-hand side the number obtained by equating the two values of k. From (7) and (8), since

$$1+\frac{p-1}{4}(1+1+1+1)=p,$$

we have

$$(N_0-p^2)^2+\frac{p-1}{4}\left\{(N_1-p^2)^2+\cdots+(N_4-p^2)^2\right\}=E+2p^4.$$

We shall prove that $E+2p^4=O(p^3)$, and then

$$N_1 - p^2 = O(p),$$

etc., the required results.

We write (9) as

(10)
$$\frac{z^2}{x} - \frac{z_1^2}{x_1} \equiv \frac{f(x, y)}{x} - \frac{f(x_1, y_1)}{x_1}$$

The number of solutions of

$$Az^2 + Bz_1^2 \equiv C, \qquad ABC \not\equiv 0,$$

is given by

$$p - \left(-\frac{AB}{P}\right)$$

If, however, $C \equiv 0$ and $AB \not\equiv 0$, the number is given by

$$p + (p-1)\left(\frac{-AB}{p}\right).$$

The bracket denotes the quadratic character.

Hence the number $E+p^5$ of solutions of (10) is S_1+S_2 , where

(11)
$$S_1 = \sum_{x,x_1,y_2,y_3} \left(p - \left(\frac{xx_1}{p} \right) \right) = p^3 (p-1)^2,$$

and

$$S_2 = p \sum \left(\frac{xx_1}{p}\right)$$

extended over the solutions of

$$\frac{f(x, y)}{x} - \frac{f(x_1, y_1)}{x_1} \equiv 0.$$

On noting (11), it suffices to prove that $S_2 = O(p^3)$. On putting $y \equiv vx$, $y_1 \equiv v_1x_1$,

$$S_2 = p \sum \left(\frac{xx_1}{p}\right)$$

taken over $x^2 f(1, v) \equiv x_1^2 f(1, v_1)$.

Now put $x_1 \equiv tx$. Then,

$$(12) S_2 = p(p-1) \sum_{k=0}^{\infty} \left(\frac{t}{p}\right)$$

taken over the solutions of

(13)
$$f(1, v) \equiv t^2 f(1, v_1).$$

In (12), we consider separately the parts arising according as t is a quadratic residue or nonquadratic residue. We put $t=lu^2$ where l=1 when t is a quadratic residue, and l=n any fixed nonquadratic residue when t is a nonquadratic residue. We have

(14)
$$S_2 = p(p-1)(N_1' - N_2'),$$

where N_1' , N_2' are the number of solutions in u, v, v_1 of

(15)
$$f(1, v) \equiv l^2 u^4 f(1, v_1)$$

for l=1, n respectively. We shall prove that

$$N_1' = p^2 + O(p), \qquad N_2' = p^2 + O(p),$$

and so $S_2 = O(p^3)$.

The values of v_1 for which $f(1, v_1) \equiv 0$ give at most O(p) solutions,

so we need not consider these v_1 any further. The number of solutions in u of $u^4 \equiv s \pmod{p}$ can be written as

(16)
$$1 + \chi(s) + \chi^2(s) + \chi^3(s),$$

where χ is an obvious biquadratic character (mod p). Hence the number of solutions of (15) is given by

$$\sum_{v,v_1} (1 + \chi(s) + \chi^2(s) + \chi^3(s)), \qquad s = f(1, v)/l^2 f(1, v_1).$$

The first term contributes $p^2 + O(p)$ to N_1' and N_2' . The second term contributes a sum

$$\tilde{\chi}(l^2) \sum_{v} \chi(f(1, v)) \sum_{v_1} \tilde{\chi}(f(1, v_1))$$

where $\bar{\chi}$ is the character conjugate to χ .

By Weil's theorem, the congruence $w^4 \equiv f(1, v)$ has $p + O(\sqrt{p})$ solutions since we have excluded the case when $f(1, v) = j(g + hv)^2$. It easily follows, as is already known, and follows from an application of Weil's theorem to a result of Davenport [2], that

$$\sum_{v} \chi(f(1, v)) = O(\sqrt{p}),$$

for any nonprincipal biquadratic character. Hence the number of solutions of (15) is equal to $p^2+O(p)$. This finishes the proof.

We now give another proof of the theorem. We have seen that

$$N = \sum_{x,y} \left(1 + \left(\frac{f(x,y) + kx}{p} \right) \right)$$
$$= p^2 - p + S,$$

where on putting y = vx,

$$S = \sum_{x,v} \left(\frac{x^3 f(1,v) + kx}{p} \right).$$

We prove that S = O(p).

We can omit the O(1) values of v for which $f(1, v) \equiv 0$ since the sum in x is then zero. Replace x by x/f(1, v). Then

$$S = \sum_{x,y} \left(\frac{x^2 + kf(1,y)}{p} \right) \left(\frac{x}{p} \right).$$

Write

$$S_A = \sum_{x} \left(\frac{x^2 + A}{p} \right) \left(\frac{x}{p} \right).$$

Let r, n be a fixed quadratic residue and nonquadratic residue mod p. We have then $A = tA_1^2$ where t = r or n. On replacing x by A_1x , and denoting S_r , S_n by R, N respectively,

$$S_A = \left(\frac{A_1}{p}\right) S_t = \frac{1}{2} \left(\frac{A_1}{p}\right) \left(\left(1 + \left(\frac{t}{p}\right)\right) R + \left(1 - \left(\frac{t}{p}\right)\right) N\right),$$

$$2S_A = \left(\frac{A_1}{p}\right) (R + N) + \left(\frac{A_1 t}{p}\right) (R - N).$$

It is known that $|R| \le 2\sqrt{p}$, $N \le 2\sqrt{p}$; in fact, it is easily proved, as is known, that $R^2 + N^2 = 4p$.

We show now that when $tA_1^2 \equiv kf(1, v)$, then $\sum_{v} (A_1/p) = O(\sqrt{p})$. On changing the notation slightly, it suffices to show that if g(v) is a cubic in v which is not of the form $j(g+hv)^2$ and $u^2 \equiv g(v)$, then $\sum_{v} (u/p) = O(\sqrt{p}).$

Replace u by ru^2 , nu^2 respectively according as u is a quadratic or nonquadratic residue of p. Since the number of solutions of $tu^4 \equiv g(v)$ is $p + O(\sqrt{p})$,

$$\sum_{p} \left(\frac{u}{p} \right) = p + O(\sqrt{p}) - p - O(\sqrt{p}) = O(\sqrt{p}).$$

This finishes the proof.

BIBLIOGRAPHY

- 1. L. J. Mordell, On a cubic congruence in three variables, Acta Arith. 8 (1962-1963),
 - 2. H. Davenport, On character sums in finite fields, Acta Math. 71 (1939), 99-121.

University of Arizona and

St. John's College