ON A CUBIC CONGRUENCE IN THREE VARIABLES. II'
L. J. MORDELL

Let p be a prime and let f(x, y, 2) be a cubic polynomial whose
coefficients are integers not all =0 (mod p), and so are elements of the
Galois field G(p). We have the

CONJECTURE. Suppose that f(x, ¥, 2) cannot be expressed as a cubic
polynomial in two independent variables, and that f(x, v, 2) is irreducible
in any algebraic extension of G(p). Then the number N of solutions of
the congruence

1 f(x, y,2) = 0 (mod p)
for large p satisfies
) N = p* 4 0(p),

where the constant implied in O is independent of the coefficients of

f(x, y, 2) and of p.
A well-known case when (2) holds is?

@3) ax®* + by +cz*+d =0, abed # 0.
Another nontrivial instance is given by [1]

(4) 2 =flx,y) +k

where

f(=, 3’) = ax® + bx%y 4 cxy® + dy?

is not a multiple of a perfect cube.

It is not without interest to find other instances for which (2)
holds. When I communicated (4) to Professor Davenport, he wrote
(October 27, 1961) that (2) also holds for

(4a) f(x, 9, 2) =k,

where f(x, ¥, 2) is the general ternary cubic form.
I prove now the

THEOREM. The result (2) holds for the congruence
(5) 2t = f(x, 9) + Iz + my,
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where
f(x, 3) = ax® + ba?y + cxy® + dy® # g(lx + my)®.

Proofs of such results are of two kinds. One is at a completely ele-
mentary level, but the other makes use of Weil’s theorem on the num-
ber of solutions of a polynomial congruence mod p. My proof of (4)
was elementary. Professor Davenport in his letter gave a nonele-
mentary proof of (4) and (4a). I give two proofs of the theorem. They
both use Weil's results, but the second one, though shorter than the
first, requires perhaps more detailed knowledge than the first.

A linear transformation shows that we can replace (5) by

(6) 2 = f(x, y) + ka.
We note that when p=3 (mod 4), N=p2

For clearly
v 2(1 N (f(x,y;+ kx))

z,v

where the inner bracket denotes the quadratic character (mod p).
This changes sign when x, y are replaced by —x, —v, and so the
result follows.

Suppose, hereafter, that p=1 (mod 4). We first dispose of the
trivial case when f(x, ¥) =jx(gx+hy)% On replacing gx+hy by v,
(6) becomes z2=jxy?+kx. This congruence has obviously p2+0(p)
solutions.

Denote by N (k) the number of solutions of (6). Then N(k) = N(kt*)
where £#0 is any integer. For on putting t2x=X, t>y=Y, #3=2,
in (6),

Zr = f(X, Y) + k'X.

Hence N(k) depends only on the biquadratic character of & (mod p),
and so as k takes all values, 0=k <p, N(k) assumes five values, one
N,, corresponding to k=0, and four others, say N1, Ns, N3, Ns. In
(6), the number of solutions with x=0 is p, and so we enumerate
hereafter only solutions with x#£0. Consider now (6) as a congruence
in four variables x50, ¥, 2, k. Then we have

1
A No+ 1’—4— (Vi + Mo+ No+ Ny) = p2(p — 1).

The left-hand side is the number of solutions corresponding to
k=0,1, - - -, p—1. The right-hand side is the number when we take
values of x#0, y, 2, since these define & uniquely. Next
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-1
®) N§+?¥4—(Nf+N§+N§+Nf)=1>°+E,

where p°+E is the number of solutions of

2 — f(x,9) _ 51 — f(#1, )
x B X1

©)

in x, v, 2, %1, ¥1, 21 where xx,#0.
We show that each side of (8) represents the number of solutions of

zz = f(xy y) + kx, ZZ = f(xI, yl) + kxi.

The left-hand side gives the number for £k=0,1,2, - - -, p—1, and
the right-hand side the number obtained by equating the two values
of k. From (7) and (8), since

p—1
L+ —0+1+1+ D) =9,

we have

-1
(Vo= 2+ 2=+ (W= 99 = B2t

We shall prove that E4+2p*=0(p?), and then
N, - P2 = 0([’);

etc., the required results.
We write (9) as

2

(10) E_ é _J®9)  fen )

x X x X1

The number of solutions of

A7 + Bai=C, ABC#0,

-(-2)

If, however, C=0 and 4 B#0, the number is given by

p+(p—1)(";B).

is given by
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The bracket denotes the quadratic character.
Hence the number E+p5 of solutions of (10) is S;+.S:, where

(11) Si= X (P - (&» = p¥(p — 1)?,
z,Z21,¥.U1 p
and
XXy
- r2(3)
: ?
extended over the solutions of

(=, 9) _ S, 1)

X X1

0.

On noting (11), it suffices to prove that S;=0(p3).
On putting y=vx, y1=v1x1,

er2(3)

taken over x2f(1, v) =x2f(1, vy).
Now put x;=tx. Then,

(12) Si=pp— 1) Z(%)

taken over the solutions of
(13) (1, 0) = (1, ).

In (12), we consider separately the parts arising according as ¢ is
a quadratic residue or nonquadratic residue. We put t=1Iu? where
l=1 when ¢t is a quadratic residue, and /=7 any fixed nonquadratic
residue when ¢ is a nonquadratic residue. We have

(14) Se = p(p — 1)(N{ — Ny),
where N{, NJ are the number of solutions in %, v, v; of
(15) (1, v) = Puf(1, v1)

for I=1, n respectively. We shall prove that
N{ =p*+0(p), N:{=p*+0(p),

and so S;=0(p?).
The values of v for which f(1, 9;) =0 give at most O(p) solutions,
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so we need not consider these v; any further. The number of solutions
in u of u*=s (mod p) can be written as

(16) 1+ x(s) + x°(6) + x*(s),

where x is an obvious biquadratic character (mod p). Hence the num-
ber of solutions of (15) is given by

> (1 + x(9) + x3(s) + x¥(s)), s = f(1, 0)/B(1, v).

v,71

The first term contributes p2+0(p) to N/ and N7 . The second term
contributes a sum

X3 20 x(f(1, v) 20 x(F(1, v0)

where x is the character conjugate to x.

By Weil’s theorem, the congruence w*=f(1, v) has p+0(+/p) solu-
tions since we have excluded the case when f(1, v)=j(g+hv)2 It
easily follows, as is already known, and follows from an application
of Weil's theorem to a result of Davenport [2], that

2 x(f(1,2)) = O(V/p),

v

for any nonprincipal biquadratic character. Hence the number of
solutions of (15) is equal to p2+0(p). This finishes the proof.
We now give another proof of the theorem. We have seen that

vo 5 (i (Le2t )

z,y
= p2 - p + S)
where on putting y=vx,
S = Z(—-——————xsf(l’i + kx).

We prove that S=0(p).
We can omit the O(1) values of v for which f(1, ¥) =0 since the
sum in x is then zero. Replace x by x/f(1, v). Then

-Z(5)0)

=2(5)6)

Write
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Let 7, # be a fixed quadratic residue and nonquadratic residue
mod p. We have then 4 =tA? where t=r or n. On replacing x by A,
and denoting S,, S, by R, N respectively,

OO e-G))
25, = (AT) R+ W)+ (%) & - ).

It is known that IRI =2+/p, NS2+/p; in fact, it is easily proved,
as is known, that RZ+N?=4p.

We show now that when t42=kf(1, v), then D, (41/p)=0(/p).
On changing the notation slightly, it suffices to show that if g(v) is a
cubic in v which is not of the form j(g+hv)? and u?=g(v), then
20 (/) =0(v/).

Replace # by ru?, nu? respectively according as # is a quadratic
or nonquadratic residue of p. Since the number of solutions of

tut=g(v) is p+0(Vp),
Z(%) =9+ 0(Vp) — p — 0(Vp) = O(V?p).

This finishes the proof.
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