
ON A CUBIC CONGRUENCE IN THREE VARIABLES. IP

L. J. MORDELL

Let p be a prime and let fix, y, z) be a cubic polynomial whose

coefficients are integers not all = 0 (mod p), and so are elements of the

Galois field Gip). We have the

Conjecture. Suppose that f(x, y, z) cannot be expressed as a cubic

polynomial in two independent variables, and thatf(x, y, z) is irreducible

in any algebraic extension of G(p). Then the number N of solutions of

the congruence

(1) f(x, y,z)mO (mod p)

for large p satisfies

(2) N = p2 + O(p),

where the constant implied in O is independent of the coefficients of

f(x, y, z) and of p.
A well-known case when (2) holds is2

(3) ax3 + by3 + cz3 + d = 0, abed ^ 0.

Another nontrivial instance is given by [l]

(4) z2 =-f(x, y) + k,

where

f(x, y) = ax3 + bx2y + cxy2 + dy3

is not a multiple of a perfect cube.

It is not without interest to find other instances for which (2)

holds. When I communicated (4) to Professor Davenport, he wrote

(October 27, 1961) that (2) also holds for

(4a) f(x, y, z) = k,

where/(x, y, z) is the general ternary cubic form.

I prove now the

Theorem. The result (2) holds for the congruence

(5) z2 = fix, y) + Ix + my,
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where

fix, y) = ax3 + bx2y + cxy2 + dy3 ^ gilx + my)3.

Proofs of such results are of two kinds. One is at a completely ele-

mentary level, but the other makes use of Weil's theorem on the num-

ber of solutions of a polynomial congruence mod p. My proof of (4)

was elementary. Professor Davenport in his letter gave a nonele-

mentary proof of (4) and (4a). I give two proofs of the theorem. They

both use Weil's results, but the second one, though shorter than the

first, requires perhaps more detailed knowledge than the first.

A linear transformation shows that we can replace (5) by

(6) z2 = fx, y) + kx.

We note that when p = 3 (mod 4), N = p2.

For clearly

ff_g(, + (MjH±.)j,

where the inner bracket denotes the quadratic character (mod p).

This changes sign when x, y are replaced by — x, —y, and so the

result follows.

Suppose, hereafter, that p=l (mod 4). We first dispose of the

trivial case when f(x, y)=jx(gx+hy)2. On replacing gx+hy by y,

(6) becomes z2=jxy2 + kx. This congruence has obviously p2 + Oip)

solutions.

Denote by Nik) the number of solutions of (6). Then Nik)=Nikt*)

where tféQ is any integer. For on putting t2x = X, t2y=Y, Pz = Z,

in (6),

Z2 m fX, Y) + kt*X.

Hence Nik) depends only on the biquadratic character of k (mod p),

and so as k takes all values, 0^k<p, Nik) assumes five values, one

¿Vo, corresponding to k = 0, and four others, say Nh N2, Nt, Ni. In

(6), the number of solutions with x = 0 is p, and so we enumerate

hereafter only solutions with xp^O. Consider now (6) as a congruence

in four variables x^O, y, z, k. Then we have

(7) A^o + ^— iNi + N2 + NS + Ni) = p2ip - 1).
4

The left-hand side is the number of solutions corresponding to

& = 0, 1, • • • , p — l. The right-hand side is the number when we take

values of x t^O, y, z, since these define k uniquely. Next
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(8) Nl + ^-(Nl + Nl + Nl+Nl) = pi + E,
4

where pb+E is the number of solutions of

z  -f(x,y) = zi - f(xx, yx)

x Xx

in x, y, z, xi, yx, Zx where xxi^O.

We show that each side of (8) represents the number of solutions of

2 2

z = f(x, y) + kx,       zx = f(xx, yx) + kxx.

The left-hand side gives the number for k = 0, 1, 2, • • • , p — 1, and

the right-hand side the number obtained by equating the two values

of k. From (7) and (8), since

1 + ^— (1 + 1 + 1 + 1) = P,
4

we have

(Ao - p2)2 + ^- {(Aj - p2)2 + ■ ■ ■ + (A4 - p2)2} =E + 2p\

We shall prove that E + 2pi = 0(p3), and then

Nx-p2 = 0(p),

etc., the required results.

We write (9) as

2 2

do) — - — = ft*'yS> _ ft*1'yi^

The number of solutions of

AÍ + Bzx = C,        ABC ̂  0,

is given by

-(-t)

If, however, C=0 and ^45^0, the number is given by

/ -AB\
P+ip-V{-J.
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The bracket denotes the quadratic character.

Hence the number E+pb of solutions of (10) is Si+S2, where

(il) St-   £   (p-(^)) = p*ip-iy-,

and

*-'£(f)
extended over the solutions of

/(*, y)    /(*i. y0 =
X Xi

On noting (11)., it suffices to prove that S2 = Oip3).

On putting y = vx, yi=»tXi,

taken over x2/(l, v)=x2fil, Vi).

Now put Xi = /x. Then,

(12) S, = i(#-1)E(-)

taken over the solutions of

(13) /(i, v) = *y(i, n).

In (12), we consider separately the parts arising according as t is

a quadratic residue or nonquadratic residue. We put t = lu2 where

I— 1 when t is a quadratic residue, and l = n any fixed nonquadratic

residue when t is a nonquadratic residue. We have

(14) S2 = pip - l)iN{ -Ni),

where Ni , Ni are the number of solutions in u, v, vx of

(15) fil, v) =- l*u%l, vi)

for I = 1, n respectively. We shall prove that

N{ = p2 + 0(p),       NI = p2 + Oip),

andsoS2 = Oip3).

The values of Vi for which /(l, î;i) =0 give at most Oip) solutions,
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so we need not consider these Pi any further. The number of solutions

in m of m4 = s (mod p) can be written as

(16) 1 + x(s) + x<s) + X3is),

where x ¡s an obvious biquadratic character (mod p). Hence the num-

ber of solutions of (15) is given by

Z (1 + Xis) + X2(s) + xzis)), s = /(l, v)/Pf(l, vx).
VtV\

The first term contributes p2 + 0(p) to N{ and N2. The second term

contributes a sum

x(T-) £ xifil, v)) £ x(/(i, «i»
v v 1

where x is the character conjugate to x-

By Weil's theorem, the congruence wi=f(l, v) has p-\-0(y/p) solu-

tions since we have excluded the case when /(l, v)=j(g-\-hv)2. It

easily follows, as is already known, and follows from an application

of Weil's theorem to a result of Davenport [2], that

E xifih v)) = OWp),
V

for any nonprincipal biquadratic character. Hence the number of

solutions of (15) is equal to p2-\-0(p). This finishes the proof.

We now give another proof of the theorem. We have seen that

s(t+ (*"> + »))A = ,
,,y   \ \ p

= p2- p + S,

where on putting y = vx,

_       /x3f(l,v) + kx\

x,v\ P )'

We prove that S = 0(p).

We can omit the 0(1) values of v for which /(l, v)=0 since the

sum in x is then zero. Replace x by x//(l, v). Then

Write

?-sf + f''")(7)
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Let r, « be a fixed quadratic residue and nonquadratic residue

mod p. We have then A =tA\ where t = r or n. On replacing x by AiX,

and denoting Sr, Sn by R, N respectively,

«-(>-7(t)((1+(7)>+(-(7)H
2SA = (—) iR + N) + (—\ (R - ff).

It is known that \R\ =2\/p, N^2y/p; in fact, it is easily proved,

as is known, that R2 + N2 = Ap.

We show now that when tA\ = kf(l, v), then ]£„ (Ax/p)=0(Vp).
On changing the notation slightly, it suffices to show that if g(v) is a

cubic in v which is not of the form j(g+hv)2 and u2 = g(v), then

22*i*/P)~OiVp).
Replace u by ru2, nu2 respectively according as m is a quadratic

or nonquadratic residue of p. Since the number of solutions of

tu* = g(v) is p+OWp),

e(—) = P + o(Vp) - p - 0(Vp) = o(Vp).

This finishes the proof.
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