A NOTE ON THE ENTROPY OF SKEW PRODUCT TRANSFORMATIONS¹

ROY L. ADLER

Let $(X, \mathfrak{X}, \lambda)$ and (Y, \mathfrak{Y}, μ) be two Lebesgue spaces with \mathfrak{X} and \mathfrak{Y} the fields of measurable subsets of X and Y respectively. λ and μ are countably additive measures on \mathfrak{X} and \mathfrak{Y} respectively with $\lambda(X) = \mu(Y) = 1$. Let $(Z, \mathcal{Z}, \nu) = (X \times Y, \mathfrak{X} \times \mathfrak{Y}, \lambda \times \mu)$ denote the direct product of the above measure spaces. Let ϕ be a measure preserving transformation on X, and for each $x \in X$ let ψ_x be measure preserving transformation on Y. If the family $\{\psi_x : x \in X\}$ of measure preserving transformations satisfies certain measurability conditions (see [2, pp. 83, 84]), then it can be shown that the transformation T defined by

$$T(x, y) = (\phi x, \psi_x y)$$

is a measure preserving transformation on Z. T is called the skew product transformation of ϕ with the family $\{\psi_x : x \in X\}$.

The purpose of this work is to compute the entropy h(T). (For definition of entropy of a measure preserving transformation and the associated notation consult [3] and [4].) The natural conjecture is

(*)
$$h(T) = h(\phi) + \int_X h(\psi_x) \lambda(dx).$$

This conjecture is substantiated in several instances. When $\psi_x = \psi$ for all $x \in X$, (*) reduces to the formula for direct product transformations (see [4] formula (β)); i.e.,

$$h(T) = h(\phi) + h(\psi).$$

For $\phi = I$ the identity transformation on X, (*) reduces to the case of decomposition of a measure preserving transformation into components (see [4] formula (ϵ)); i.e.,

$$h(T) = \int_{X} h(\psi_x) \lambda(dx).$$

When Y = unit interval and $\psi_z y = y + \alpha(x) \pmod{1}$ where $\alpha(\cdot)$ is some real-valued measurable function on X, Abramov [1] has shown

$$h(T) = h(\phi)$$

Received by the editors May 2, 1962.

¹ The material in this paper was included in the author's doctoral dissertation submitted to Yale University (1961) under the direction of Professor S. Kakutani.

which is again a special case of (*) since $h(\psi_x) = 0$, $x \in X$.

In general (*) is not true. However, we shall derive a formula which differs from (*) in the function occurring within the integral.

Let \mathfrak{X}_k , $k=1, 2, \cdots$ be an increasing sequence of finite subfields of \mathfrak{X} whose union generates \mathfrak{X} and let \mathbb{Z}_m , $m=1, 2, \cdots$ be an increasing sequence of finite subfields of \mathbb{Z} whose union generates \mathbb{Z} . Let ${}^n_T\mathbb{Z}_m$ denote $\mathbb{Z}_m \vee T\mathbb{Z}_m \vee \cdots \vee T^{n-1}\mathbb{Z}_m$. Denote by $(\mathbb{Z}_m)_x$ the field of subsets of Y which consists of x-sections of sets in \mathbb{Z}_m . We observe

We shall employ an ambiguity whose meaning will be clear in context by having the symbols \mathfrak{X}_k represent either fields of measurable subsets of X or fields of cylinder sets in Z based on subsets of X in \mathfrak{X}_k . Keeping this ambiguity in mind consider the following relation between mean entropy and mean (conditional) entropy of finite fields (see [4, p. 980])

$$H({}_{T}^{n}\mathfrak{X}_{k} \vee {}_{T}^{n}\mathfrak{Z}_{m}) = H({}_{T}^{n}\mathfrak{X}_{k}) + H({}_{T}^{n}\mathfrak{Z}_{m} | {}_{T}^{n}\mathfrak{X}_{k})$$
$$= H({}_{0}^{n}\mathfrak{X}_{k}) + H({}_{T}^{n}\mathfrak{Z}_{m} | {}_{T}^{n}\mathfrak{X}_{k}).$$

Dividing by n and observing ${}^{n}_{T}\mathfrak{X}_{k}\subseteq\mathfrak{X}$ we have the inequality

(2)
$$\frac{H(_{T}^{n}\mathfrak{X}_{k}\vee_{T}^{n}\mathfrak{Z}_{m})}{n}\geq\frac{H(_{\phi}^{n}\mathfrak{X}_{k})}{n}+\frac{H(_{T}^{n}\mathfrak{Z}_{m}\mid\mathfrak{X})}{n}.$$

The definition of mean (conditional) entropy yields

$$H({}_{T}^{n}\mathbb{Z}_{m} | \mathfrak{X}) = \int_{\mathbb{X}} H(({}_{T}^{n}\mathbb{Z}_{m})_{x}) \lambda(dx).$$

By replacing the function in the integral with (1) and substituting in (2) we get

$$(3) \frac{H({}_{T}^{n}\mathfrak{X}_{k} \vee {}_{T}^{n}\mathfrak{Z}_{m})}{n} \geq \frac{H({}_{\phi}^{n}\mathfrak{X}_{k})}{n} + \int_{X} \frac{H((\mathcal{Z}_{m})_{x} \vee \psi_{\phi^{-1}x}(\mathcal{Z}_{m})_{\phi^{1-x}} \vee \cdots \vee \psi_{\phi^{-1}x}\psi_{\phi^{-2}x} \cdots \psi_{\phi^{-n+1}x}(\mathcal{Z}_{m})_{\phi^{-n+1}x})}{n} \cdot \lambda(dx).$$

The following identity can be established (see for instance [3, p. 33]):

$$H((\mathbb{Z}_m)_x \vee \psi_{\phi^{-1}x}(\mathbb{Z}_m)_{\phi^{-1}x} \vee \cdots \vee \psi_{\phi^{-1}x}\psi_{\phi^{-2}x} \cdots \psi_{\phi^{-n+1}x}(\mathbb{Z}_m)_{\phi^{-n+1}x})$$

$$(4) = \sum_{j=0}^{n-1} H((\mathbb{Z}_m)_{\phi^{-j}x} | \psi_{\phi^{-j-1}x}(\mathbb{Z}_m)_{\phi^{-j-1}x} \vee \cdots$$

$$\bigvee \psi_{\phi^{-j-1}x} \cdot \cdot \cdot \psi_{\phi^{-n+1}x}(\mathbb{Z}_m)_{\phi^{-n+1}x}$$
.

As n tends to ∞ ,

$$H((Z_m)_{\phi^{-i}x} | \psi_{\phi^{-i-1}x}(Z_m)_{\phi^{-i-1}x} \vee \cdots \vee \psi_{\phi^{-i-1}x} \cdots \psi_{\phi^{-n+1}x}(Z_m)_{\phi^{-n+1}x})$$

decreases to a limit which we denote by $f_{\phi}(x, \mathbb{Z}_m, j)$. Likewise, as $n \to \infty$,

$$\int_X H((\mathcal{Z}_m)_{\phi^{-i}x} \mid \psi_{\phi^{-i-1}x}(\mathcal{Z}_m)_{\phi^{-i-1}x} \vee \cdots \\ \vee \psi_{\phi^{-i-1}x} \cdots \psi_{\phi^{-n+1}x}(\mathcal{Z}_m)_{\phi^{-n+1}x})\lambda(dx)$$

tends to

$$\int_{\mathbb{X}} f_{\phi}(x, \mathbb{Z}_m, j) \lambda(dx).$$

By virtue of the fact that ϕ is measure preserving it follows that

(5)
$$\int_{X} f_{\phi}(x, \mathbb{Z}_{m}, j) \lambda(dx) = \int_{X} f_{\phi}(x, \mathbb{Z}_{m}, 0) \lambda(dx).$$

Having outgrown the need for a function of three variables we replace $f_{\phi}(x, Z_m, 0)$ by simply $f_{\phi}(x, Z_m)$. From (4) and (5) and the fact that ordinary convergence implies Cesaro convergence we obtain

(6)
$$\int_{X} \frac{H(({_{T}^{n}}\mathbb{Z}_{m})_{x})}{n} \lambda(dx) \to \int_{X} f_{\phi}(x, \mathbb{Z}_{m}) \lambda(dx)$$

as $n \to \infty$. Taking limits in (3) as $n \to \infty$ yields

(7)
$$h(T) \geq h(T, \mathfrak{X}_k \vee \mathbb{Z}_m) \geq h(\phi, \mathfrak{X}_k) + \int_{\mathbb{X}} f_{\phi}(x, \mathbb{Z}_m) \lambda(dx).$$

Then letting $k \rightarrow \infty$ we get

(8)
$$h(T) \ge h(\phi) + \int_X f(x, \mathbb{Z}_m) \lambda(dx).$$

In order to obtain the reverse inequality consider

(9)
$$\frac{H\binom{nl}{T}\mathbb{Z}_{m}}{nl} \leq \frac{H\binom{nl}{T}\mathbb{X}_{k} \vee \frac{nl}{T}\mathbb{Z}_{m}}{nl} = \frac{H\binom{nl}{T}\mathbb{X}_{k}}{nl} + \frac{H\binom{nl}{T}\mathbb{Z}_{m} | \frac{nl}{T}\mathbb{X}_{k})}{nl} \\ \leq \frac{H\binom{nl}{\Phi}\mathbb{X}_{x}}{nl} + \frac{H\binom{nl}{T}\mathbb{Z}_{m} | \frac{nl}{T}\mathbb{X}_{k})}{nl}.$$

Now

(10)
$$H({}^{nl}_T \mathbb{Z}_m \mid {}^{nl}_T \mathfrak{X}_k) \leq \sum_{i=0}^{n-1} H(T^{il}({}^{l}_T \mathbb{Z}_m) \mid {}^{nl}_T \mathfrak{X}_k) \leq \sum_{i=0}^{n-1} H(T^{il}({}^{l}_T \mathbb{Z}_m) \mid T^{il} \mathfrak{X}_k)$$
$$\leq nH({}^{l}_T \mathbb{Z}_m \mid \mathfrak{X}_k).$$

Combining (9) and (10) we have

(11)
$$\frac{(H_T^{nl} \mathcal{I}_m)}{m!} \leq \frac{H_{\phi}^{nl} \mathcal{X}_k)}{m!} + \frac{H_T^{l} \mathcal{I}_m \mid \mathcal{X}_k)}{l}.$$

Letting $n \rightarrow \infty$ in (11)

(12)
$$h(T, \mathcal{Z}_m) \leq h(\phi, \mathfrak{X}_k) + \frac{H({}_T^l \mathcal{Z}_m \mid \mathfrak{X}_k)}{l},$$

and letting $k \rightarrow \infty$ in (12)

$$h(T, Z_m) \leq h(\phi) + \frac{H({}_T^l Z_m | \mathfrak{X})}{l},$$

or equivalently,

(13)
$$h(T, \mathbb{Z}_m) \leq h(\phi) + \int_{\mathbb{X}} \frac{H(\binom{l}{T}\mathbb{Z}_m)_x}{l} \lambda(dx).$$

Next letting $l \rightarrow \infty$ and combining the result with (8) we have

(14)
$$h(T, \mathbb{Z}_m) \leq h(\phi) + \int_{\mathbb{X}} f_{\phi}(x, \mathbb{Z}_m) \lambda(dx) \leq h(T).$$

Now

$$f_{\phi}(x, \mathbb{Z}_m) = \lim_{n \to \infty} \frac{H(({}_T^n \mathbb{Z}_m)_x)}{n},$$

and it is clear that $f(x, Z_m)$ increases with m to a possibly infinite but

well defined limit $f_{\phi}(x)$. Since $\lim_{m\to\infty} h(T, \mathbb{Z}_m) = h(T)$, it follows from (14) that

(**)
$$h(T) = h(\phi) + \int_{Y} f_{\phi}(x) \lambda(dx).$$

Of course we would like to establish

(***)
$$\int_{X} f_{\phi}(x) \lambda(dx) = \int_{X} h(\psi_{x}) \lambda(dx)$$

where

$$f_{\phi}(x) = \lim_{m \to \infty} f_{\phi}(x, \mathbb{Z}_m)$$

$$H((\mathbb{Z}_m)_x \vee \psi_{\phi^{-1}x}(\mathbb{Z}_m)_{\phi^{-1}x} \vee \cdots \vee \psi_{\phi^{-1}x}\psi_{\phi^{-2}x} \cdots$$

$$f_{\phi}(x, \mathbb{Z}_m) = \lim_{n \to \infty} \frac{\psi_{\phi^{-n+1}x}(\mathbb{Z}_m)_{\phi^{-n+1}x}}{n}$$

$$h(\psi_x) = \lim_{m \to \infty} h(\psi_x, \mathbb{Z}_m)$$

$$h(\psi_x, \mathbb{Z}_m) = \lim_{n \to \infty} \frac{H((\mathbb{Z}_m)_x \vee \psi_x(\mathbb{Z}_m)_x \vee \cdots \vee \psi_x^{n-1}(\mathbb{Z}_m)_x)}{n}.$$

The quantities $h(\psi_x, Z_m)$ and $f(x, Z_m)$ are different by the nature of their definitions. Perhaps only mild restrictions are required so that the differences can be eliminated by integration to yield (***). The following example, however, reveals that in general (***) is not true: let $X = X_1 \cup X_2$ where $m(X_1) = m(X_2) = \frac{1}{2}$; let $\psi_x = \psi$, $x \in X_1$ and $\psi_x = \psi^{-1}$, $x \in X_2$ where ψ is a measure preserving transformation on Y such that $h(\psi) \neq 0$; and let ϕ be a measure preserving transformation on X such that $\phi X_1 = X_2$, $\phi X_2 = X_1$ and $\phi^2 = I$. Then for $T: (x, y) \rightarrow (\phi x, \psi_x y)$ we have T^2 is the identity transformation on $X \times Y$ so that h(T) = 0; but $h(\phi) + \int_X h(\psi_x) \lambda(dx) = h(\psi) \neq 0$.

REFERENCES

- 1. L. M. Abramov, On entropy of flows, Dokl. Akad. Nauk SSSR 128 (1959), 873-875.
- 2. H. Anzai, Ergodic skew product transformations on the torus, Osaka Math. J. 3 (1959), 83-99.
- 3. P. R. Halmos, Entropy in ergodic theory, Univ. of Chicago, 1959. (Mimeographed Notes)
- 4. V. A. Rokhlin, Entropy of metric automorphism, Dokl. Akad. Nauk SSSR 124 (1959), 768-771.

International Business Machines Corporation