
A CONVERGENCE PROBLEM FOR
CONTINUED FRACTIONS1

T. L. HAYDEN

In this paper a sequence V of regions in the complex plane is called

an admissible sequence provided that:

(i) for re 2:2, V„ is either a circle with center the origin plus its

interior (Co+int.), or a circle with center the origin plus its exterior

(Co+ext.), and

(ii) the continued fraction

(1.1) 1/1      Oi/i      at/l      a4/l      •••
+ + + +

converges if for «2:2, anE V„.

The problem that is raised in this paper, and to which the following

theorems contribute a partial solution, is the problem of finding all

admissible sequences for (1.1). The collection of all admissible se-

quences is denoted by AS.

Before stating the theorems, it is convenient to have some addi-

tional notation and definitions. The continued fraction (1.1) is con-

sidered as being generated by the sequence / of linear fractional trans-

formations defined by:

(1.2) tiiz) = l/z,       tniz) = 1 + ajz re 2: 2.

The sequence T of linear fractional transformations is defined by :

(1.3) Ti(z) = hiz),        Tniz) = Tn-iitniz)) re 2: 2,

so that

(1.4) Tniz) =-;-
Bn-iz + anBn-2

where ai = 1 and

A0=0,Ai=l;       An = An-i + anA„-2;

Bo = 1, Bi = 1;        B„ = B,,-i + anBn-2.

The reth approximant/„ of (1.1) is T„il)=An/B„ for re 2:1.

Theorem 1. Suppose V is a sequence such that for each integer re> 1
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either Vn is a C0+int. or Vn is a C0+ext., and there exists an integer

p>\ such that Vp and Vp+x are not bounded; then there exists a sequence

a of complex numbers such that an E Vn for n > 1 and the continued frac-

tion (1.1) diverges.

The proof of Theorem 1 is simplified by the following lemma.

Lemma 1. If each of R and S is a positive number, u is a complex

number not 1, and v is a complex number not 0, then there exists a com-

plex number a and a complex number b such that \a\ >R, \b\ >S and

u=l+a/(l+b/v).

Proof. Let n be a positive number such that n\u —1| >R and

(« — l)|o| >S. Then, if a = niu — 1) and b=(n — l)v the conclusion

of Lemma 1 follows.

Proof of Theorem 1. Suppose p is an integer such that VP and

Vp+x are not bounded. If the continued fraction

(1.7) 1/1      ap+2/l      ap+3/l      ...
+ + +

diverges in the sense that the approximants have more than one limit

point, then (1.1) diverges. Therefore, we assume that (1.7) does not

diverge in the above mentioned sense and let aP+2 be a complex num-

ber in Vp+2 so that (1.7) converges to a complex number v not 0. If

p = 2 there exists, by Lemma 1, an a2 in V2 and an a3 in F3 such that

0 = 1+02/(1+03/^). If P>2, let02, a3, ai, ■ ■ • ,0,-1 be nonzero complex

numbers in V2, V3, Vi, • ■ ■ , Vp-x, respectively, such that Bp_2 and

Bp-z are not 0 and —ap-xBP-z/Bp-2 is not 1. By Lemma 1, there

exists an ap in Vp and an ap+1 in Vp+1 such that, — av^xBp-%/Bp-2

= l+ap/ii+ap+1/v). We now note that by (1.3) and (1.4) 7\(0) = «3

and Tp-xi — ap-xBp-z/Bp-2)=a> for p>2. Hence, the approximants

/„—* 00 as w—> 00.

Remark 1. Lane and Wall [3] completely settled the problem of

finding all admissible sequences where each region of the sequence is

bounded by showing that, for FEAS (and F„ bounded), it is neces-

sary and sufficient that there exist a sequence g of positive numbers

less than 1 such that Fn: |z| ¿»(1— gn-i)gn-

Theorem 2. Suppose V is a sequence such that for n ^ 2

(i) Either Vn is a Co+int. or Vn is a Co+ext.,

(ii) At least one of V„ or Vn+1 is a Co+int., and

(iii)  There exists a number gn_i and a number rn such that,

(a) 0<g„_1<l, 0<rnál,

( I z\   ^ r„(l — gn-i)gn if Vn is bounded,

11 z I  ^ (1 + gn-i) (2 — ga)       if V„ is not bounded, and
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(b) if p is an integer such that VP+i is not bounded, and M is the

collection of all such integers, then either M is finite or H¡c in M rk = 0.

Then VEAS.

Lemma 2.1. Suppose that Vis a sequence which satisfies the hypothesis

of Theorem 2, anEVn, and for re 2:1,

Í | z — 11  á 1 — gn        if F„h is bounded,

v I z |   2: gn if Vn+i is not bounded,

then tniZn) EZn-ifor re 2:2.

Proof. For convenience the proof is divided into two cases: Vn

bounded and V„ not bounded.

Suppose Vn is bounded; consequently Z„_i: \z —1| ¿=1—g„_i. If

zEZn the minimum value of \z\ (for Vn+i bounded or not bounded) is

gn. It follows that for z in Z„ and an in Vn\tn(z) —1| =|an|/|z|

^rn(l— gn-dgn/gn^l— gn-i- Hence, tn(Zn)EZn-i in case V„ is

bounded.

In case Vn is not bounded, so that Vn+i is bounded, then Zn-i: \z\

2:gn_! and Zn: \z—l\ =^1— gn. The maximum value of |z| for z in

Z„ is 2 — gn- Let z E Zn and an E Vn, then |i»(z) — l|

2:(l+g„_1)(2-g„)/(2-g„); so that \tn(z)\^gn-i, and hence the

lemma is true for F„ not bounded.

The following lemma constructs a sequence U of circular regions

each containing the next such that the «th approximant /„ of (1.1)

is in Un.

Lemma 2.2. Suppose V is a sequence which satisfies the hypothesis of

Theorem 2, anEVn, Z is a sequence which satisfies the hypothesis of

Lemma 2.1, and U is the sequence defined by: e7„=rn(Zn) for re2^1.

Then, for «2:1, e7n+iCi7n. Furthermore, fnEUn.

Proof. We need only note, from Lemma 2.1, that tn(Zn)EZn-i

and, by (1.3), Tn(z) = Tn-i(tn(z)) ; consequently, since e7„ = r„(Z„)

= Tn-iitniZn)) and e7„_i=rn_i(Z„_i), therefore UnEUn-i for «2:2.

From the definition of Z„ it is clear that lEZn, and since P„(l) =/„

it follows that /„ G <7„.

Lemma 2.3. Suppose V is a sequence which satisfies the hypothesis of

Theorem 2 and anEVn. Then, for £2:2, \B„/Bp_i — l\ ^gp, if VP is

bounded, and | Bp/Bp-i — 11 2:2 — gp, if Vp is not bounded.

Proof. By (1.5), B0 = l, Bi = l, and Bp = Bp-1+apBp-2, so that the

lemma is true for p = 2. Suppose the lemma is not true for some set M

of positive integers. Let k +1 be the least integer in M. Now by the
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assumption that ife + 1 is the least integer for which the inequalities

fail, we see that Bk and Bk-x are not 0, and hence by (1.5) | Bk+1/Bk — 11

= \ak+x\/\Bk/Bk-x\.

We shall now consider two cases: Vk+x bounded and Vk+1 not

bounded. In case Vk+1 is bounded | a*+i| ^ (1 — gk)gk+x- Also, | Bk/Bk-x\

2:1—g*,, lor Vk bounded or unbounded. Hence \Bk+x/Bk — l\ úgk+i-

In case   Vk+l is  not  bounded,   Vk is  bounded,  so  that   | ak+x

èil+gk)i2-gk+x)    and    \Bk/Bk-x\-âl+gu.    Hence    \Bk+1/Bk-l

^2—gk+x and the statement in the lemma is true for jfe + 1. Conse-

quently, the set M does not exist.

We note that for £2:1, Bp^0 and \BP\ 2: \Bp-x\ (1 -gp).

Proof of Theorem 2. In case F„+i is bounded for »^1 or M is

finite, then the proof follows from Remark 1 and Lemma 2.2. Sup-

pose pEM, p>2, and M is infinite. Let Rp and Cp denote the radius

and center respectively of Up. Since gv is on the boundary of Zp and

TPiZp) = Up, hence Rp= | Cp— TPigp)\. Since points inverse in the

circle Zp are mapped by TPiz) into points inverse in the circle Up it

follows that Cp = TPigP[Bp_x}*/[— apBp^2}*), inasmuch as

TPi — apBp-2/Bv-x) - œ. We may then use these expressions and (1.4)

to show that

I apgp\ ' I Ap-iBp-2 — Ap-2Bp-x I

RP   =    14-lBp-ll»-    |cip|2-|Ep_2|2|     '

A similar argument, plus the use of (1.5), shows that

I 1 — gp-i I • I Ap-xBp-2 — Ap-2Bp~x I

Rp~'=  \\Bp^\2-ii-gP~iy-\B^2\2\   '

Since \ap\ ^rp(l — gP-x)gP, Lemma 2.3 is sufficient to show that

Rp/Rp^.x^rp. By Lemma 2.2, Uv+xEUp and hence the sequence

Rx, R2, Rz, • • ■ is a nonincreasing sequence, consequently, the condi-

tion JJfc ¡„ m rh = 0 is sufficient to show that the regions of the se-

quence U have only one point in common, and hence (1.1) converges.

Theorem 3. Suppose V is a sequence such that conditions (i), (ii),

and (iii)-(a) of the hypothesis of Theorem 2 are satisfied with rn = l for

«2:1, and X^"T rn\, m2, mz, • • • ,mr converges where

(Sn/il - ?») if Vn is bounded,
mn =  <

(.(2 — gn)/(l — gn)       if F„ is not bounded;

then FGAS. Moreover, the continued fraction (1.1) converges absolutely

in this case.

Proof. If some ^ = 0, since Bpr^0, for p = l, then (1.1) converges.
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Hence we shall assume that a^^O for £2:2. Let

(3.1) hi = 0,       hp = - apBp-t/Bp-i p 2: 2,

then TPihp) = <x>. Furthermore, since TpQip) = Tp+iihp+i)

= Tptp+iihp+i), then /zp = i,,+i(wp+i) which implies that hP+i

= —ap/il—hp) for £2:1. By (3.1) and Lemma 2.3, \hp\ ^gp if Vp is
bounded and \hp\ 2:2 — gp if Vp is not bounded. We now restate (1.4)

in the following more useful form:

(3.2) Tniz) = fn-l + ianAn-2Bn-i - anBn-2An-i) / ßl-^z - h„).

Since 7"„(0) =fn-2 and P„(l) =/„ we see from (3.2) that

\if» - /«-l)/(/n-l - /n-2) [    =    |  iK/H  ~ K) \  .

Lane [2] proved that (1.1) converges absolutely, if there exists a

sequence d of positive numbers such that, |A„/(1— hn)\ údn/il+dn+i)

for re2:1. Let pn= | «„/(l— hn)\, then the sequence d will exist pro-

vided Ei-"™ M1M2M3 • ■ • Mr converges. The maximum value of

\hn/il-hn)\ is g„/(l-gn) if Vn is bounded and it is (2-g„)/(l-g„)

if Vn is not bounded. Hence the conditions of Theorem 3 are sufficient

for the absolute convergence of (1.1).

Theorem 4. Suppose each of s and q is a positive number and

0<r<l,andforn^l, \a3n-i\ ^il+q+s)2, \a3n\ f^rq,and |a3n+i| Urs.

Then the sequence of approximants f2, f, f, f, • • • , fu-i, fn, ■ • • of

(1.1) converges.

Lemma 4.1. Suppose a2, a3, a^, ■ ■ ■ is a sequence which satisñes the

hypothesis of Theorem A and for re 2:1; Z3n_2". \z\ 2:s+a, Z3„_i: \z—1\

^s+q, andZZn: |z-l| ús/is+q). Then tkiZk)EZk-i for k^2.

A proof, similar to that of Lemma 2.1, is omitted. We note that

0 may be in Z3n_i, and in this case f3n-i(0) = co, a point in Z3n_2.

Lemma 4.2. If (1) a2, a3, 04, • • • is a sequence which satisfies the

hypothesis of Theorem 4, (2) Zi, Z2, Z3, • • • is a sequence which satisfies

the hypothesis of Lemma 4.1, and (3) for «2:1,   <7„=r„(Zn); then

Un+lEUn.

A proof, similar to that of Lemma 2.2 is omitted.

We note that/3nEt73n and fn-iE U3n-u but/3n+i is not in J73n+i

in case s+q>l.

Lemma 4.3. 7/a2, a3, 04, • • ■ is a sequence which satisfies the hypoth-

esis of Theorem A, then for «2:1; (1) | B3n-i/BZn-2 — 11 è(l+g+5),

(2) \Bin/B3n-i-l\ èq/iq+s), and (3) | £3n+i/33n -11 ^q+s.
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A proof, similar to that of Lemma 2.3, is omitted.

Indication of a proof of Theorem 4. Methods similar to those

used in the proof of Theorem 2 may be used to show that, for «2:1,

Rzn/Rzn-i á r, where Rn is the radius of the region U„. This is sufficient

to show that the regions of the sequence U have only one point in

common.

We note that if s+g^Sl in Theorem 4, then f„EUn for every n,

and hence (1.1) converges. This is a better result than can be ob-

tained from Theorem 2, since the convergence of (1.1) can be ob-

tained from Theorem 2 only in case s-\-q<l.

Corollary 4.1. Suppose 0<2s<l, 0<r<l, and for each positive

integer n, F3n_i: \z\ 2:(l+2s)2, F3„: \z\ ^rs, and F3n+i: \z\ ^rs. Then

V is in AS.

The regions in Corollary 4.1 are best in the sense that if / > 0 and

0<c<4í(l+¿) then the periodic continued fraction such that, for

«2:1, a3n_i= — (l+2i)2+c, a3n = a3n+i = t diverges.

Cowling, Leighton and Thron [l] proved that, for «2:1, |<i2n| j£r2,

|ci2n+i| 2:2(r2 —cos arg ö2n+i)+o for 5>0 and r>l is sufficient for

convergence of (1.1).

The following argument shows that in the case of triple regions

convergence is not obtained without suitable restrictions on the radii

of the bounded regions.

Theorem 5. Suppose s>0, Fs„_i: \z\ 2:s, F3n: \z\ ásl, and Vzn+i'-

\z\ £J1. Then there exists a sequence a2, a8, 04, • ■ • such that, anEVn

for «2:2, and (1.1) diverges.

Lemma 5.1. The continued fraction (1.1) diverges in case aP ¿¿0

for £2:2, and the following series converges:

I (1 + a2)/ci21  + I a2(l + at)/a3 \  + | a3(l + a6)/a2aias1

(5.1) +| 020405(1 + a7)/aza6\  + | a3cí6(l + a¿)/a2aiaíla-,a»\

+    I  0204050708(1  + Cllo)/ct30eCl9 |   +   *   "   *   •

For a proof see Wall [6].

Proof of Theorem 5. Suppose t is a number greater than s and 1,

and let a3„_i = i, and a3n = o3n+i= — 1 for «2:1. In this case the series

(5.1) reduces to

Imfz |i/f>|.
V~l

Since this series converges for i>l, by Lemma 5.1 the continued

fraction (1.1) diverges.
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NOTE ON A NONLINEAR EIGENVALUE PROBLEM

MARVIN SHINBROT1

1. In the theory of hydrodynamic stability, eigenvalue problems

of the form

1
(1.1) Lu -\-Mu = \u

X

arise [l, p. 430 ]. Here, L and M denote ordinary differential oper-

ators, the order of L exceeds that of M, and the boundary conditions

are such that L is self-adjoint. One of the questions of interest is

whether there exist eigenvalues of this problem and, if so, whether

the corresponding eigenfunctions are complete.

Replacing X by 1/X, it is easy to see that if L~l exists, (1.1) is

equivalent to

(1.2) \u = Au + \2Bu,

where A =L_1 and B= —L~lM are compact, and A is symmetric. In

this note, we shall consider the question of the completeness of the

eigenfunctions of the following generalization of (1.2) :

(1.3) Xw = Au + \aBxu,

where a> 1, A is compact and symmetric, and B\, which, as the nota-

tion indicates, may depend on X, is merely bounded. More precise
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