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The recent work of Adams, Atiyah, Todd, and Walker on the com-

plex Stiefel manifolds has certain implications regarding the structure

of the nonstable homotopy groupsir¡(Um),i>2m. The purpose of this

note is to set up some of the machinery for investigating these impli-

cations. The information we have obtained so far concerning w^Um),

i>2m, is contained in Corollary I, stated below. It is likely that a

more refined attack will yield better information. Theorems I and II

are here regarded primarily as stepping stones to Corollary I; how-

ever, they may prove to be of some intrinsic interest.

The general situation we envisage is the following. Let A be a finite

C.W. complex and /: Sm—»X a map. There are two cases.

1. The stable homotopy class of the map/is of finite order. In this

case, define co-degree/=0.

2. The stable homotopy class of the map/ is of infinite order, i.e.,

the induced map Hm(Sm; Q)—>Hm(X; Q) is nontrivial. Then, by gen-

eral theory, the map is 5 rationally co-reducible. That is, there exists

an integer k and a map h: Sk(X)-+Sk+m such that the composite

hsk(f): Sk+m-+Sk(X)-^Sk+m is an isomorphism on Hm+k(Sk+m; Q).

Given such an S rational co-reduction, the map hsk(f) : Sk+m—>Sk+m

has a degree which we call, by abuse of notation, deg.(Ä). Among all

S co-reductions, there exists one of least positive degree h' (not neces-

sarily unique) and the degree of any other 5 co-reduction is a multi-

ple of deg.(h'). Thus we can make the following definition:

co-degree /=deg.(Ä'), h' an 5 rational co-reduction of minimal

positive degree.

Among the spaces X which fit into the above picture are the com-

plex Grassmanians Vn+k.k= Un+k/Un- There is a standard map

S2n+1=Un+i/U„—>Un+k/Un- The co-degree of this map will be de-

noted by Tl. We have

il * 0, IÎ = 1    and   l\ = 0 (mod fk-i).

To state the properties of Vn+k¡k we need for our investigation, we

now introduce a tool first exploited by Atiyah [4] and which lies be-
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hind the recent solution of Adams [l], Adams-Walker [2], Atiyah-

Todd [5] of some celebrated problems of algebraic topology. (See

[3] for a detailed discussion.) We refer to the / functor. For our pur-

pose, a presentation due to Adams [3 ] is most convenient.

Let Pi, F2 be two fiber spaces over X. A map pi: Fi—*F2 is called

"fiberwise" if pi covers the identity map. pi is called a fiber homotopy

equivalence if there exists a fiberwise map p2: F2-*Fi such that pip2

and p2p\ are homotopic to the identity via fiberwise maps.

Definition. Let Ex, E2 be vector bundles over X (real or complex).

Then, Pi, E2 are called J equivalent

Ei J E2,

if the associated sphere bundles are fiber homotopically equivalent.

Now let KaÍX) be the Grothendieck ring of stable vector bundles

(A = complex or real fields). We define a quotient group

MX) = KkÍX)/UkÍX),

where í/aPO is the subgroup of elements of the form [Pi]- [E2],

where Pi, E2 are J equivalent. (Z7A(X) is a subgroup since

P1/P2

and

E{ J Ei    implies    £1 0 E{ J E2@ El.)

The decomposition

KlÍX) = Kk(p) + KtiX) = Z + Za(X),

where p is a point and K^iX) is the reduced Grothendieck ring, in-

duces a decomposition

MX) = Jiip) + JaÍX) = Z + 7A(X).

Since every complex bundle can be considered a real bundle, and we

can in turn complexify any real bundle, we have maps

\:JciX)^JRiX)    and   c:JsiX) -*JciX).

We remark that X is a monomorphism. An important fact is that the

groups JaÍX) are finite. The order of xEKRiX) in JrÍX) is what is

usually called the stable J order of x.

To study the co-index of the complex Stiefel manifolds, one looks at

the groups JciCPk), where CPk is the complex projective space of k— 1

complex dimensions. Specifically, Atiyah has shown that J¡? = 1 iff raL*

is / equivalent to 0, where Lk = canonical complex line bundle over
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CPk, that is, iff « = 0 (mod mk), where mk is the order of Lk in Jc(CPk)

[4]. Using this fact, he and the others mentioned have computed

those pairs («, k) lor which Ik = 1 [2; 5]. One might suspect that, in

general, II is closely related to the stable / order of « Lk. This is, in

fact, true, as the following theorem shows.

First let us define new integers ml.

Definition. Let ml be the order of « in Z/mkZ.

Notice ml is just w* and in general m\ is the order of «L* in

Jc(CPk). These integers are much more convenient than Ik since they

are computable. They are related as follows.

Theorem I. Ik and ml have the same prime factors.

Remark. That (ll)p = 0 (mod ml) is due essentially to Adams [3].

One might conjecture 11 = ml, but we are unable to prove it.

A relation between the general situation and our model, the com-

plex Grassmanians, is given in the following theorem.

Theorem II. Let f: S2n+1—>X be a map such that:

1. 0<co-degreef;

2. the prime divisors of the co-degree f are ^ w;

3. dimX^2(n+k);
4. there exists a complex n plane bundle over X, E, such that it is S

trivial and such that f*(E) =E', the standard complex reduction of the

tangent bundle of S2n+1.

Then, (w")3 = 0 (mod co-degree f) for some integer q.

Remarks. Hypothesis 2 is not overly restrictive. In fact, we have:

Proposition I. Suppose dim A<4«-+-1 and f: 52n+1—>X2n+i (the

2» + l skeleton of X) is co-reducible. Then the prime divisors of the co-

degree of f are ^«.

Sketch of proof. The p primary component of the stable homo-

topy group, xm = 7Tm+„(5"), n sufficiently large, is 0 if m<2p — 3. (See

Hu [6, Chapter XI].) Now, a simple induction argument construct-

ing X one cell at a time from its 2« + l skeleton yields the result.

As is well known, a complex « plane bundle is 5 trivial on X if its

Chern classes vanish and H*(X; Z) has no torsion. Thus, in practice,

the condition in Hypothesis 4 that E be 5 trivial is not too difficult

to check.

The fewer prime divisors of ml, the more information the theorem

yields. In particular, if ml=l, the theorem asserts the map/ has a

right S homotopy inverse.

We now use the above theorem to gain information about the

groups TTi(Um).
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Corollary I. Consider the standard fibration, S2n+1-+BUn-*BUn+i.

Let Kr<2k^2n. Then, the kernel 7r2,l+r(S2ri+1)—►îr2n+r(P£/„) consists

only of classes xG7r2n+r(S2n+1) such that iml)" = 0 (mod order x) for

some q.

Proof. Let M = P2„+r+iUIS2n+I. Let p be the map, p: S2"+1-+BUn.

Then the map p can be extended to p' : M—*B Un iff x is in the kernel

of wip). The map p can be extended iff the map i: S2n+1—>M satisfies

the hypothesis of Theorem II. Thus (wzt)î = 0 (mod co-degree t). But

the co-degree i = the order of x in ir2n+r(S2"+I). Q.E.D.

Corollary I along with the previous remarks imply:

Corollary II. Suppose ra = 0 (mod mk). Then, irip) : 7r2n+r(S2n+1)

—* ff2n+riBUn), 1 <r = 2k, is a monomor'phism.

The formula for mk is as follows [3]: For any prime p, let yPia)

be the exponent of p occurring in the prime factorization of a. Then

yPimk) = 0       if p > k

yPimk) = Sup (r + yPir))        ii p ^ k,
r

where

1 £ r S k - 1/p - 1.

Proof of Theorem I. The proof of Theorem I splits into two parts.

It suffices to prove the two statements:

a. ill)p = 0 imodmnk);

b. iml)" = 0 imod II).
The proof proceeds via a well-known reduction. If P is a vector

bundle over a space X, we denote by Xe the Thorn space of P. We

are particularly interested in X=CPk and L the canonical complex

line bundle. Now CPf is an S retract of Vn+k,k [4; 7]. Thus, II is also

the co-index of the canonical map S2n—»CPjJL. For the moment, we

simply ignore the complex structure and consider all bundles as real

bundles. Let R denote the trivial (real) bundle of real dimension P.

Then we have a map for some P, p: CPklL+R-^SnL+R such that its

composition with the canonical map Sin+R—*CPkL+R is of degree II.

The proof of (a) proceeds as follows. Let S(raL+P+l) denote the

associated sphere bundle to rai+P + l over CPk. Then we have a map

X: S(raL+P + l)—>CP£L+ß which is a homeomorphism when restricted

to each of the fibers. This induces a map X': S(raL+P+l)—>S2n+R

which is a map of degree Ik on each of the fibers. If w is the map

S(raL+P_ + l)-+CP*, then the map X'Xir: S(raL+P-f-l)->S2"+s
X CPk is a fiberwise map of degree Ik on each of the fibers. According

to Theorem 4 of Adams [3], the stable / order of (raL+P + 1) is a
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divisor of (T¿)p. But the stable J order of (nL+R + l) is the stable

/ order of nL, which is exactly ml. Thus (/?)" = 0 (mod ml). Q.E.D.

The proof of (b) will take a little longer, since we do not have

Adams to help us. The first step involves examining the structure of

Kc(CPk). The proof of the following can be found in [l ]. In any case,

it is not difficult. Kc(CPk)=Z[x]/[xk] as an algebra over Z. The

generator x can be chosen so that 1 +x is represented by the canonical

line bundle L. To obtain the properties we want, we have to study

the homomorphism /: Kc(CPk)-^>Jc(CPk) on xr and Lr. In general,

J does not behave well with respect to multiplication ; however, the

complex projective spaces have special properties which we can utilize.

CPk can be regarded as the 2^ — 2 skeleton of CP«, which is a K(Z, 2)

space and, in particular, a topological group which is a Z module.

Thus for each integer r, there is a map r: CPa—^CPK; hence, by using

cellular approximation if necessary, a map r: CPk—*CPk. It is easily

checked, using the Chern character, that r*(L)=LT. Thus we have

Lemma I. If mJ(x) = 0, then mJ(xT) =0 for each r>0.

Proof. By induction on r. J(mx) =0 implies J(r*(mx)) =0 implies

J(r*(m(L-1))) = 0 implies J(mr*(L-1)) = 0 implies J(m(L'-1)) = 0
implies J(jm((x+1)''— 1)) = 0. Now expanding (x + l)r and using the

induction hypothesis, we get the result.

Lemma II. Suppose mq = 0 (mod mk). Then there exists a p such that

J(mLa) = 0 (in Jc(CPk)), where a = q".

Proof. If g= 1, then Lemma I says any p j& 0 will do. Otherwise,

we can choose p so large that
1. xa = 0;

2. (x + l)a = xa + l (modg) = l (mod q).

In fact, choosing p = k and using the fact that x*+1 = 0, (2) is easily

shown to be satisfied. Now J(mLa) = mJ((x + i)a). By (2), (x + l)° is

of the form 1 + q(Zi°ix')- Now J(m(l + q(Zi°ix'))) = Jim)
+ JimqiZjbiX')). The second term is 0 by the hypothesis and

Lemma I. Thus J(mLa) = J(m). Hence J(mLa) = 0. Q.E.D.

So far we have used the existence of a map Lr-+L covering a map

CPk-^CPk- However, for a line bundle there is a map going the other

way also.

Lemma III. Let L be a complex line bundle over a space X. Then for

each r, there exists afiberwise map p: L—>Lr. Futher, inner products can

be chosen so that p preserves norms. Finally, the induced map on the

associated circle bundles has degree r on each of the fibers.
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Proof. Let L' be the associated circle bundle to L. Then L' is a

principal bundle with group S, the circle. The representation r: S—*S

of ea-+eire induces another principal S bundle over X, L". By defini-

tion, the associated line bundle is just LT. Now

L" = S X L',
s

where the action of S on itself is via the representation r. Thus the

map L'—>L" taking e—>(1 Xe) is a fiberwise map which is of degree r

on each of the fibers. The map r: S-^S extends to a norm preserving

map C—+C, qeie—*qeiTi. Thus the fiberwise map extends to one

p': CXsL'—>CXsL". Putting the Hermitian inner product on

CXsL' (respectively CXsL") induced from CXL' (respectively

CXL"), we see that p' is norm preserving. Now L=CXsL' and

Lr= CXsL" (by definition), and the lemma follows.

It is obvious from the definition that we have

Corollary III. The fiberwise map L-*Lr induces a fiberwise norm

preserving map mL—*mLT of degree rm on the fibers of the associated

sphere bundles.

Now by the same argument used in the proof of (a) and by Corol-

lary III, we have Corollary IV.

Corollary IV. There exists a map CPmL-*CPmE, where E = L',

such that the composite map S2m-+CPnL—*CPmE is homotopic to rn times

the canonical map S2m-^CPmE.

We can now complete the proof of (b). Letting q = m\ in Lemma II,

we have JinL") = 0, where a = qv for sufficiently large p. Using a for r

in Corollary IV and the fact that CP"E, where E = La, is S co-reduci-

ble, it follows that the co-index of S2"-+CP"L divides a" = q' for some /.

Thus imlY = 0 (mod Pk). Q.E.D.
Proof of Theorem II. We consider the fibration Un-+Un+k

—*Vn+k,k. We also have the fibration Vn+k,k-+BU„-^BUn+k. For any

finite C.W. complex X and any map/: S2n+1—>X, we have a ladder of

exact sequences:

[X, Un+k] ->   [X, Vn+k,k]   -+   [X, BUn]   -*    [X, BUn+k]

if if if if

[S*»+\ Un+k] -» [S2"+\ Vn+k.k] -» [S2"+\ BUn] ~* [S2"+\ BUn+k]

II II II II
Z ——-» Z->Z/nlZ-> 0.
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Now let us apply the hypothesis of Theorem II. Hypothesis 4 implies

there is a p'E[X, BUn] such that Pip') =i, a generator of Z/nlZ.

Hypotheses 3 and 4 imply there is such a p' which goes to 0 in

[X, BUn+k]- This p' pulls back to p, pE [X, Vn+k,k] such that f2(p)
= 1 (mod «!). Thus the composite pf: S2n+1—>X—>Vn+k,k satisfies

pf=l (mod «!), where pfE^2n+iiVn+h,k)=Z. Now, passing to the

stable case, we have a co-reduction t: Sr(Vn+k,k)—>S2"+r+1. Recalling

the definition of /", we can choose t such that tsr(p)sr(f) = 7" (mod «!)

as elements of ■7r2n+r+i(S2n+r+1) =Z. Let g = tsr(p)sr(f). Choose an inte-

ger p so that («!)p = 0 (mod co-index/). Then (g — ll)p = 0 (mod «!").

Thus, mg= (Il)p (mod «!") for some m. Since (w!)p = 0 (mod co-index

/), we have mg= (FQ)V (mod co-index/). But mg is a co-reduction of/.

Thus mg = 0 (mod co-index/). Therefore, (Ink)p = 0 (mod co-index/).

Now applying Theorem I yields Theorem II. Q.E.D.

Final remark. The methods of proof in this note are highly non-

geometric, not because of choice but because we could not prove

them any other way. Geometrically the situation should be viewed as

follows. There is a sequence of sphere bundles

BUn-k-i

I

i
S2n+1 -> BUn

i

BUn+i.

Let p.;: 52i+1—>BUi be the maps in the fiber spaces above. Suppose

for simplicity we consider the case ml=l. Then, Corollary II says

ir(p„): Tr2n+r(S2n+l)—>TT2n+r(BUn), Kr <2k is a monomorphism. How-

ever, one also knows that ml= 1 iff p,n_i factors back through a map

p'n^x'- S2n~l—+BUn-k-i. That is, if the complex tangent bundle on S2n~l

admits a nonzero k frame. Thus one geometric statement implies

another. It would be more satisfactory if one could see this relation-

ship via geometric constructions. One might hope that there is some

general duality involved which has stronger implications.
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CURVATURE IN NILPOTENT LIE GROUPS

JOSEPH A. WOLF

1. Introduction. The purpose of this note is to prove:

Theorem. Let M be a Riemannian manifold which admits a transi-

tive connected noncommutative nilpotent Lie group of isometries. Given

xEM, there exist 2-dimensional subspaces R, S and T of the tangent-

space Mx such that sectional curvatures satisfy

(*) KiS) < 0 < KiT)    and   P(P) = 0.

Corollary. Let G be a connected nilpotent Lie group, let B be a

positive definite symmetric bilinear form on the Lie algebra & of G, and

let M be the Riemannian manifold obtained by left translation of B to

every tangentspace of G. Then these are equivalent :

1. M has a positive sectional curvature.

2. M has a negative sectional curvature.

3. G is not commutative.

To prove the Corollary from the Theorem, one simply observes

that M must be flat if G is commutative.

The interest of the Theorem and its Corollary is based on the deep

similarity between nilpotent Lie groups and Riemannian manifolds of

nonpositive sectional curvature. Two striking points of similarity

are their coverings (compare [4] with §4.2 of [3]) and their exponen-

tial mappings. The results of this note show that the class of Rie-

mannian manifolds obtained by placing left invariant metrics on nil-

potent Lie groups is quite different from the class of Riemannian

manifolds of nonpositive sectional curvature. In the nonflat case one
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