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1. Introduction. Following the terminology in [3, p. 70], let us

agree first of all that by an involution poseí (L, '), we will mean the

following: L is a partially ordered set with a largest element 1

equipped with a mapping ' : L—>L called the involution such that for

e, fEL, eg/=>/'^e', and for eEL, e = e". If also (i) for e, fEL with

e£f, sup \e,f) =eV/exists, and (ii) fore,/GL, eá/=>/=eV(/'Ve)',

then L will be called an orthomodular poset. Finally, we define an

orthomodular lattice to be an orthomodular poset that is also a lattice.

In [4, pp. 96-107], G. Mackey presents an argument that shows on

quite plausible physical grounds that the "logic" of (nonrelativistic)

quantum mechanics forms an orthomodular poset. He then assumes

on grounds of "regularity" that it is actually an orthomodular lat-

tice, in fact that it is the lattice of closed subspaces of a separable

infinite-dimensional Hubert space. It would be nice to find additional

physical justification for this last assumption, and therefore any con-

dition on an involution poset which guarantees that it is actually an

orthomodular lattice has importance.

The following approach to this question has recently been de-

veloped by D. J. Foulis [3, pp. 70-72]. Assuming (L, ') to be an in-

volution poset, let S(L) denote the set of all monotone maps <p: L—>L

having the property that there exists a (necessarily unique) monotone

map <p*:L-^L such that (e<b)'(p*^e' and (e<j>*)'(p^e' for each eEL.

An element <t>ES(L) is called a *-monotone mapping, and the element

<p* is known as the adjoint of <p. Foulis [2, p. 648] defines an involution

semigroup to be a multiplicatively written semigroup S equipped with

a mapping *: S-^S, (called the involution), such that for x, y ES,

(xy)* = y*x* and (x*)*=x** = x. It is easily verified that S(L) pro-

vides an example of an involution semigroup with a zero element

(having function composition as the semigroup operation and 0—><£*

as the involution).

A semigroup S is called a Baer *-semigroup in case it is an involu-

tion semigroup with a zero element 0 such that for each xES there
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exists a (necessarily unique) element x'ES with {yES: xy = 0\

= x'S, and x'= (x1)2 = (x1)*, where * is the involution mapping in S.

We then have the following result whose proof is given in [3, Theo-

rem 10, p. 71].

Theorem 1. The necessary and sufficient condition that the involution

poset (L, ') be an orthomodular lattice is that the involution semigroup

S(L) be a Baer *-semigroup.

By considering antitone rather than monotone mappings, we shall

generalize this result by obtaining necessary and sufficient conditions

for an antitone mapping on an arbitrary poset L with 0 and 1 to turn

L into an orthomodular lattice. The author wishes to point out that

many of his ideas were obtained from a consideration of results in

[3] and [5]. He also wishes to thank Professor D. J. Foulis for direct-

ing the research necessary for this paper.

2. Antitone mappings. In this section L and M will denote par-

tially ordered sets having a largest element 1 and a smallest element 0.

Letters in the first half of the alphabet will denote elements of L,

while those of the second half will be reserved for elements of M.

The symbols 1 and 0 will ambiguously denote the largest and smallest

elements of both L and M.

By an antitone mapping of L into M, we shall mean a mapping

a:L—>M such that fore, fEL,e^f^fa^ea. lia: L-^Mandß: M->L
are each antitone mappings, then the pair (a, ß) is said to form a

Galois connection in case for each eEL, xEM, we have e^eaß and

x < xßa.

Lemma 2. If a: L—*M, ß: M-+L, y: M-^L are antitone mappings

having the property that (a, ß) and (a, y) each form Galois connections,

then ß=y.

Proof. Let xEM. Then x^xßa, so that xßay^xy. Hence xß

^ xßay ^ X7 ; similarly, X7 í¡ xß.

This shows that an antitone mapping a : L—+M can form a Galois

connection with at most one antitone mapping ß : M—*L. For reasons

that will soon be apparent, such a mapping ß: M—>L (if it exists)

will be called the adjoint of a and frequently indicated by the symbol

a*. The set of all antitone mappings from L into M possessing ad-

joints will be denoted by G(L, M) ; if L = M, we shall write G(L) in

place of G (L, L).

Lemma 3. For each xEM, there is a mapping aEG(L, M) such that

\a = x.
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Proof. Define mappings a: L-^M and ß: M—^L as follows, and

then compute: For eEL, let ea = x if e^O, and Oa=l. For yEM, let

yj3=l if y^x and ;y/3 = 0 otherwise.

For the case where L = M, since the composition of two antitone

mappings is monotone, it is pointless to try making G(L) into a

semigroup with respect to function composition. However, the com-

position of three antitone mappings is again antitone, so that we are

led to the following operation on G(L): Let §EG(L) have + as its

adjoint. Given a, ßEG(L), define aQß by the formula e(aOß)

= ea$ß for each eEL. Naturally enough, we now wonder just when

(G(L), O) is a semigroup, an involution semigroup, or better still a

Baer *-semigroup. Note that when we speak of (G(L), ©) as being

an involution semigroup, we shall always be referring to the mapping

a-^a* as the involution.

Lemma 4. For arbitrary eEL, e# = e#+# and e+ = e+#+.

Proof. See [l, p. 56].

Lemma 5. The necessary and sufficient condition that (G(L), O) be

an involution semigroup is that eff^e for each eEL.

Proof, (i) Assume (G(L), O) is an involution semigroup. Define

mappings a, ß: L-^L as follows: Choose an arbitrary element eEL.

Set ga = e if g7^0, 0a=l; gj8=l if g^e, gß = 0 otherwise. From the

proof of Lemma 3, we see that aEG(L) with ß = a*. Let y=a®$; by

assumption 7*= + Qa*= +Oj3, hence 1 gl77* = l(aO#)(+Oj3)

= laf#+#ß = e#(i+#)ß = e##ß. Thus e##/3=l, and by the definition

of ß, we have that e## ^ e.

(ii) Suppose conversely that e##i=e for every eEL. Given a, ß

EG(L), we are to show that aQßEG(L) with (aQß)*=ß*Qa*; i.e.,

that for each eEL, e^ea#ßß*#a* and e^eß*§a*a§ß. We know that

gugßß* lor any gEL, and in particular that eaf^eafßß*. Applying

# and then a* to this inequality produces eajf§a*^ea§ßß*§a*. But

(ea)#jf^ea implies that e^eaa*^ea$fa*^ea#ßß*$a*. Similarly,

e^eß*$a*a#ß.

Lemma 6. (G(L), O) is an involution semigroup with a multiplicative

identity if and only if (L, #) ¿5 an involution poset.

Proof, (i) Suppose that (G(L), O) is an involution semigroup hav-

ing usa multiplicative identity. Then tO + = + Ot=+, so that

for any eEL, e+ = ei#+ = e+#i. Applying Lemma 4, we see that

£+# = et#+# = et# and e#+=e#+#i = e#i. By uniqueness of the ad-

joint of # it follows that + = 1. By Lemma 5, e##^e for every eEL,
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and therefore ejj^ejJU- Clearly e### = (e#)##ge#, whence e# = e###

for arbitrary eEL. Then ejj = e( + Qjj)=e+#jj, e## = e+### = e+#,

and finally, eúe+§ = ejj§. Therefore e$f = e, and (L, jf) is indeed an

involution poset.

(ii) If (L, f) is an involution poset, then by Lemma 5, (G(L), O)

is an involution semigroup. The involution # is obviously effective as

the multiplicative identity of G(L).

Lemma 7. 7/ (L, jf) is an involution poset, then there is an involution

preserving semigroup isomorphism between S(L) and (G(L), Q).

Proof. If <¡>ES(L), let a(<p) =<p#. Then a(<p) is antitone, and since

ecpjfp* èejf, we have e t^e<pjj<p*jf = ea(<p)a(<p*). Similarly, e^ea(<p*)a(<p),

and therefore a(<p)EG(L) with [a(4>)]*=a(<p*). If aEG(L), define

</>(«) by <p(a) =ajj. Then <p(a) is monotone, and e^eaa* implies that

eajfjja*jj = eaa*jf^ejf;i.e., [ecp(a)]#$(<**) úe§.Similarly, [e<p(a*)]jf<p(a)

^e#, so that (¡>(a)ES(L) with [(p(a)]*=<p(a*). In view of the in-

volutory nature of # it is evident that 4> = <p(a(cp)) and a = a(<p(a)),

so that we have set up a one-one involution preserving correspond-

ence between S(L) and (G(L), O). The proof is completed by noting

that for 4>, iPES(L), a, ßEG(L), and eEL, ea(#) = a^tf = aMHWf
= e(a(<p)Oa(\P)), and e<j>(aOß)=ea§ß# = e<p(a)<p(ß).

We are now ready to produce a necessary and sufficient condition

in terms of antitone mappings for a poset with 0 and 1 to be an ortho-

modular lattice.

Theorem 8. Let Lbea poset with 0 and 1. Choose a fixed element #

of G(L), and for a, ßEG(L), let a Qß = afß. Then, the following condi-

tions are mutually equivalent:

(i)  (L, #) is an orthomodular lattice.

(ii)  (L, f) is an involution poset and S(L) is a Baer *-semigroup.

(iii)  (G(L), O) is a Baer *-semigroup.

Proof (i)<=»(ii). This is a consequence of Theorem 1.

(ii)=*(iii). By Lemma 7 there is an involution preserving semigroup

isomorphism between S(L) and (G(L), Q). Hence (G(L), O) is a

Baer *-semigroup.

(iii)=>(ii). If (G(L), O) is to be a Baer ""-semigroup, then it must

first of all be an involution semigroup with identity. By Lemma 6,

(L, #) is an involution poset, and making use of Lemma 7, we see

that S(L) is a Baer *-semigroup.

3. Change of involution. There is one final question we shall con-

sider here. Suppose that (L, jf) is an involution poset, and that +

is another involution on L. The set G(L) is independent of the choice
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of involution, while the definition of S(L) depends on the particular

involution used. Conceivably, distinct involutions could lead to dis-

tinct sets of the form S(L). It turns out, however, that a change in

the involution on L corresponds to a change in the notion of adjoint,

but leaves the elements of S(L) fixed. We adopt the following tempo-

rary notation: Let S(L, #) denote the set of *-monotone mappings

of (L, #), and for cpES(L, #), let 4>* denote its adjoint as computed in

S(L, #). Analogous notation applies for (L, +).

Theorem 9. Let (L, f) be an involution poset. If + is another involu-

tion on L, then S(L, #) =S(L, +). Furthermore, there exists an element

tES(L, #) such that: (i) ^=^t; (ii) +=#; (iii) ^ = ##; (iv) for
each 4>ES(L, f), <p*+ =^(j>*\¡/~1. In fact, there is a one-one correspondence

between changes of involution and mappings \¡/ES(L, f) with xp"1 = $>j/$.

Proof, (a) Since + is clearly in G(L), Lemma 7 shows that

-\-#ES(L, #), and we may set \p=+#. It is obvious that ^_1 = # +

= #+## = ##, and since («*)# = (e+#)#+# = e++# = e#, we have

\p* = \¡/. Note that if <p E S(L, #), then so is # = </> + #. This shows that

^+ = (0+#)#^g(l)i and nnany that <p = (<b+) + ES(L, +). Thus
S(L, #)ES(L, +), and the reverse inclusion is obtained by inter-

changing the roles of # and + in the above argument. It is now un-

ambiguous to write S(L) in place of S(L, #) or S(L, +). Given

<pES(L), we must determine </>*. To do this it suffices to find an

aEG(L) such that (<£ + , a) forms a Galois connection. This is equiva-

lent to saying that a#=((p+f)*=(<f>\}/)*=\p(p*. It follows that

<t>+ = a+ = o#+ = i<j>f#+ = ^#^_1.

(b) Let \pES(L) with ^ = ##, and set + =$$. Then + is clearly

antitone, and for eEL, e-\--\-=e\pf\p# = e4np~1 = e, so that + is an in-

volution on L. Thus each \pES(L) with the property that 4'~1 = jhp§

gives rise to an involution on L, and (a) shows that every involution

arises in this manner. To show that the correspondence is one-one,

we need only note that if + =\p#, then </-=+#.
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