
NOTE ON M-GROTJPOIDS

NANCY GRAHAM

In a recent paper of Tamura, Merkel, and Latimer [2], the follow-

ing question was raised:

Suppose 5 is a groupoid (cf. [l]) which satisfies:

(1) There is at least one left identity in S.

(2) If y or z is a left identity of 5, then x(yz) =■= (xy)z for all xES.

(3) For all a, bES there exists x£5 such that ax = b.

Then does S satisfy:

(3') For any xES there is a unique left identity e (which may de-

pend on x) such that xe = x?

A groupoid which satisfies (1), (2), and (3') is defined in [2] to be

an Af-groupoid. It is the purpose of this note to present an example of

a groupoid satisfying (1), (2), and (3), which is not an ikf-groupoid.

It will be shown, however, that every finite groupoid satisfying (1),

(2), and (3) is an Af-groupoid.

Let A be a denumerable set. For simplicity, denote its elements by

1, 2, 3, • • • . Let • be a binary operation on A which satisfies the

following Cayley table:

1

12 3 4

3      2 3 a24

3 2 3 Ö34

4 2 3 a44

m

m

a2m

a%m

3      aai

where the a„ are arbitrary positive integers subject only to the re-

strictions :
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(a) Oy 7* 2 for alH > 1, j > 3.

(b) a2j = azj for all j>3.

(c) For each i>l, {a,,:/>3} =A.

That is, the operation • is to satisfy the following conditions:

(i)  l-x = x for all xEA.

.... .      ¡XÍÍX7á2,

(U)X-I=\3ifx = 2.

(iii) x-y = 2 if and only if y = 2.

(iv) x-3 = 3 for all xG^4-

(v) 2-x = 3-x for all xG^4-

(vi) ForallxG^, [x-y:yEA)=A.

(In particular, if we let ai4= 1 for all i> 1, and atJ=/— 1 for all i> 1,

j>4, then the binary operation defined by the Cayley table above

satisfies (i)-(vi). Thus these conditions are consistent.)

Then S= (A, • ) is a groupoid which satisfies conditions (1) and (3),

by (i) and (vi). To see that S satisfies (2), consider the two cases:

(a) Suppose y=l in (2). If x¿¿2 then (x-1)-z = x-z = x-(l-z), by

(ii) and (i). If x = 2 then (x-1) -z=(2-l) -z = 3-z = 2-z = 2-(l-z)

= x- (1 -z), by (ii), (v), and (i). Thus we have (x-1) -z = x- (1 -z) for all

x, zES.
(ß) Suppose z=l in (2). If y^2 then x-y 7e! and (x-y)-l=x-y

= x-(y-l), by (iii) and (ii). If y = 2 then x-y = 2 and (x-y) -1 =2-1 — 3

= x-3 = x-(2-1) =x-(y-l), by (iii), (ii), and (iv). Thus we have

(x-y) -1 =x-(y-1) for all x, yES.
Since x 9a 1 implies x • 1 j¿ 1 by (ii), then 1 is the only left identity of 5.

Hence 5 satisfies (2), by (a) and (ß).

However, 5 is not an Jf-groupoid because (3') is not satisfied for

x = 2.

Suppose (3) is replaced by the stronger condition :

(3") For all a, bES there exists a unique xES such that ax = b.

Then it is easy to prove the following

Theorem. // a groupoid S satisfies (1), (2) and (3") then S is an

M-groupoid.

Proof. Let aES. By (3") there is a unique cES such that ac = a.

To show that 5 is an M-groupoid it suffices, by (3'), to show that c

is a left identity of S. By (1) and (2), there exists a left identity e of

5 such that a(ce) = (ac)e = ae, and hence ce = e, by (3"). Therefore, for

any xES, we have cx = c(ex) = (ce)x = ex = x, and the proof is com-

pleted.

Since every finite groupoid satisfying (3) also satisfies (3"), we

have the immediate
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Corollary. If S is a finite groupoid which satisfies (1), (2) and (3),

then S is an M-groupoid.
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THE INDEX PROBLEM FOR INFINITE
SYMMETRIC GROUPS

EDWARD D. GAUGHAN

Let M be an infinite set with cardinal X, S(X, Y) = \cr: a is a per-

mutation on M such that | spt a\ < Y], where spt <r= \mE M : <j(m)

7im\. If X is a cardinal, denote its successor by X*. Onofri [2 ] proved

that S(d, d*) has no proper subgroups of finite index and S(d, d) has

precisely one, the alternating group A(d). These results have been

extended by Higman [l] and Scott [3]. Higman has shown that

S(X, d) has only one proper subgroup of index less than X, the

alternating group A(X), and A(X) has no proper subgroups of index

less than X. If Z is a cardinal such that ZZ<X, Scott proved that

S(X, Y) lor Y>d has no subgroups of index less than or equal Z.

In this paper, the following generalization of these results is proven.

Theorem. If d< Y^X*, S(X, Y) has no proper subgroups of index

less than X.

Lemma 1. If d^Z<Y, [S(X, Y): H] <X, then H contains an ele-

ment a such that | spt a\ =Z and | M\spt <r| = X.

Proof. HC\S(X, Z*) has index less than X in S(X, Z*) lor any

Z<Y. Since the index of S(X, Z) in S(X, Z*) is greater than or equal

X, there is a E H such that | spt cr| =Z. If Z<X, then | M\spt<r| =X.

If Z — X, there are disjoint sets Mi and M2 such that M=MiWM2

and | Mi| =|M2| =X. Let G= {<r: spt aCMij. Then 22716? has index

less than X in G, hence there is aEHC\G such that | spt cr\ =X and

since spt <rCMi, | M\spt <r\ =X.
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