A NOTE ON FREE LIE ALGEBRAS

G. LEGER¹

In this paper we give two results on the following problem which was suggested to us by G. Hochschild: If L is a Lie algebra over a field K and if $H^2(L, M) = 0$ for all L-modules M, is L a free Lie algebra? The universal mapping property of free Lie algebras plus the interpretation of $H^2(L, M)$ in terms of Lie algebra extensions shows that the converse is true. For details see Cartan-Eilenberg, *Homological algebra*, Chapters XIII and XIV. Here, Lie algebras need not have finite dimension.

THEOREM 1. Let L be a Lie algebra over a field K such that

- 1. $H^2(L, K) = 0$ where K is considered as a trivial L-module.
- 2. L has a vector subspace T such that $T \cap [L, L] = 0$ and T generates L. Then L is a free Lie algebra.

PROOF. Suppose false and let F = F(T) denote the free Lie algebra over the vector space T. The identity map: $T \rightarrow T$ can be extended (uniquely) to a homomorphism ϕ of F onto L with nonzero kernel R. R is contained in [F, F]. In fact, if x is in R, write x = t + y with t in T, and y in [F, F]. Then $0 = \phi(x) = t + \phi(y)$ so that t is in $T \cap [L, L] = 0$.

Since F is a free Lie algebra, $\bigcap_i F^i = 0$, where $F^1 = F$, \cdots , $F^i = [F, F^{i-1}]$, \cdots . Thus $[F, R] \neq R$ and we let R^* be an ideal of F of codimension one in R such that $R^* \supset [F, R]$. Then $L \approx F/R \approx (F/R^*)/(R/R^*)$ and, as a trivial L-module, $R/R^* \approx K$. Suppose F/R^* splits over R/R^* . Then F has a subalgebra S containing R^* such that $S/R^* + R/R^* = F/R^*$ and $S/R^* \cap R/R^* = 0$. The latter property implies that S is a proper subalgebra of F. Now S+R=F and $R \subset [F, F] = [S, S] + [S, R] + [R, R] \subset S+R^* \subset S$ so that S=F and we have a contradiction.

THEOREM 2. Suppose that L is generated by two elements and that L properly contains L^2 and L^2 properly contains L^3 . Then, if $H^2(L, K) = 0$, L is a free Lie algebra.

PROOF. Let x and y generate L. Since $L \neq L^2$ we may assume $x \in L^2$ without loss of generality. Let V be the vector space spanned

Received by the editors April 16, 1963.

¹ Research supported by National Science Foundation grants NSF G-14860 and NSF GP-784.

by x and y; then if $V \cap L^2 = 0$ we are done by Theorem 1. If $z \in V \cap L^2$ and $z \neq 0$, then x and z still generate L. In this case $L = (x) + L^2$ so z has the form $z = \sum [a_i x + h_i, b_i x + h'_i]$ with a_i , b_i in K and h_i , h'_i in L^2 . This means that z is in L^3 . But any element of L^2 is a sum of words in x and z and each word must contain z i.e., $L^2 \subseteq L^3$ contrary to hypothesis.

HARVARD UNIVERSITY AND
WESTERN RESERVE UNIVERSITY

A REMARK ON SEMI-SIMPLE LIE ALGEBRAS

GORDON BROWN

The following observation seems to be lacking in the literature.

THEOREM. The sum of the squares of the lengths of the roots of a semisimple Lie algebra is equal to the dimension of a Cartan subalgebra.

As usual the lengths of the roots are taken with respect to the non-degenerate Killing form Tr ad x ad y.

PROOF. No generality is lost in assuming the ground field algebraically closed.

Consider the matrix M whose entries are the inner products (α, β) , where α , β range over all the roots with respect to the Cartan subalgebra H. We have

$$(\alpha, \beta) = \operatorname{Tr} \operatorname{ad} h_{\alpha} \operatorname{ad} h_{\beta} = \sum_{\gamma} \gamma(h_{\alpha}) \gamma(h_{\beta}) = \sum_{\gamma} (\alpha, \gamma)(\gamma, \beta)$$

where h_{α} denotes the dual of α ; i.e., $\alpha(h) = (h_{\alpha}, h)$ for all h in H. Thus $M^2 = M$ and Tr M = rank M. Hence $\sum_{\alpha} (\alpha, \alpha) = \dim H$.

University of Illinois

Received by the editors March 25, 1963.