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We shall assume throughout that if is a class of structures (i.e.,

relational systems) that is elementary in the wider sense; that is, K

is the class of all models of some finite or infinite set of sentences of

the first order predicate logic with identity. A structure 23 is said to

be a union of a set M of structures if each 21G M is a substructure of

23 and every element of 23 is an element of some 21E M. Our purpose

in this paper is to prove the result below.

The following two conditions are equivalent :

(ai) if 23 is a union of some subset M of K, then 23 EK;

(bi) K is the class of all models of some set of sentences of the form

Vv03vi3v2 ■ • ■ 3i)m$,

where $ has no quantifiers.

We shall actually consider the more general notion of an w-union,

where n is a natural number. 23 is said to be an n-union of a set M of

structures if each 21E M is a substructure of 23 and each collection of

at most n elements of 23 is included in some 21E M. Thus 23 is a

1-union of M iff 23 is a union of M; moreover, 23 is a 0-union of M iff M

is nonempty and 23 is a common extension of all 21E M. Note that if

23 is an w-union of M, then 23 is an w-union of M for all m%.n. Our

main result will be

Theorem A. If n is a fixed natural number, then the following two

conditions are equivalent:

(a„) if 23 is an n-union of some subset M of K, then 23ÇAI;

(b„) K is the class of all models of some set of sentences of the form

V»0  •   •   • V»n-l3»n  •   •   •   3»m$,

where 4> has no quantifiers and n—l^m.

Theorem A above was announced without proof in 1959 in [5].

The original proof was by methods similar to those introduced in [4].

Since that time, continuing developments in the theory of models

has made it possible to give progressively shorter proofs of the theo-

rem, one of which is given here. The present proof depends on the no-

tion of a special structure, which is due to Morley and Vaught [8].

The author is indebted to C. C. Chang and Roger Lyndon for helpful
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discussions in connection with the results of this paper.

Before passing to the proof of Theorem A, we shall pause to men-

tion some closely related earlier results. The following theorem is due

toTarski [12] and Los [ó].

The following two conditions are equivalent :

(a') if $8 is a substructure of some UEK, then $8EK;

(b') K is the class of all models of some set of universal sentences.

A refinement of the above theorem is the result below, which is

due to Vaught and is implicit in [13].

If n is a fixed natural number, then the following two conditions are

equivalent:

(a") if every substructure of 23 of power ¿nis in K, or if 33 is a sub-

structure of some ÎIEK, then $$EK;

(b") K is the class of all models of some set of sentences of the form

Vso • • • V*>B-i$,

where f> has no quantifiers.

In case « = 0, Theorem A reduces to the following theorem of Los

[6] and Henkin [3] (which is the dual of the theorem of Tarski and

Los stated above).

The following two conditions are equivalent :

(ao) */ 33 is an extension of some %EK, then $8EK;

(bo) K is the class of all models of some set of existential sentences.

We now state a result of Los and Suszko [7] and of Chang [l].

The following three conditions are equivalent :

(au) if M is a subset of K and, for all n, 33 is an n-union of M, then

33G-K;
(bu) K is the class of all models of some set of V 3 sentences;

(cu) the union of any ascending w-chain of members of K belongs

toK.

Only the equivalence of (bw) and (cw) were actually stated in [7]

and [l], but (a„) is the natural analogue of (a„). It is easily seen, how-

ever, that (bu) implies (au) and that (au) implies (cw) ; the deep part

of the result is that (cM) implies (bM). See also [2], [9], in connection

with the condition (b„).

We shall distinguish between sets and classes, and shall assume the

axiom of choice throughout. We refer to [8] for all of our notation, as

well as for general references in the theory of models. We always as-

sume that 31 and 33 are structures of an arbitrary but fixed similarity

type, and we denote by k the power of the set of all symbols of the

first order logic corresponding to that similarity type. Thus k is

infinite. As in [8], we also consider structures of the form (31, ac)cec,
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where each ac is an element of Sí. | 211 is the set of all elements of 2Í.

21 = 23 means that 21 and 23 are elementarily equivalent.

In [12], the term "union" was used in a different sense than ours.

To clarify the situation, let us consider a nonempty set M= {21,-: iEl\

of structures 21; =(^4,-, Ri) where each i?< is a binary relation on Ai.

The union of M in the sense of [12] is the structure (U¿er Ai, Ute/ Ri),

which always exists and is unique. For the set M to have a union in

our sense it is necessary and sufficient that RiHiA^CLRj for all i,jEI-

If M does have a union in our sense, then the union of M in the sense

of [12] is a union of M in our sense; in fact, any structure (A, R)

such that A = \JieiAi, \JieI RiÇR, and RCWJiei (A2t -R{) = 0 is a
union of M, and these structures are the only unions of M. For M to

have an »-union it is necessary and sufficient that M have a union

and each set of at most n elements of U¿e/ Ai be included in some A¡.

If »>0 and M has an »-union, then 21 is an »-union of M if and only

if it is a union of M.

We shall use the following definition from [8].

Definition. 21 is said to be special if it is of infinite power a and

there is a cf (a) -complete ideal Q in the field of all subsets of 21 such that:

(1) each member of Q has power <a;

(2) I SI I is the union of a chain of members of Q ; and

(3) whenever XQYQ\Sö\, Y has power <a, f is a function on X into

I 211 withfXEQ, and (Sí, fx)xex = (33, x)xex, then f can be extended to a
function g on Y into | 211 with gYEQ and (21, gy)yey = (23, y)»er.

We shall call Q a specializing ideal of 21.

The following result of Morley and Vaught is suggested by the

definition. Although it is not stated explicitly in [8], it is closely re-

lated to the fact that a special structure is universal (Corollary

2.4(a) of [8]), and that sufficiently large special structures are rela-

tion-universal (Theorem 3.6 of [8]); indeed, the method of proof is

the same.

Lemma 1. Suppose 21 is special and of power a, that 23 = 21, and that

C is a subset of 1231 of power ^ a. Then there is a function f on C into

I 211 such that
(%,b)beC=(K,fb)b€C.

Proof. We may express C as the union of an ascending chain

(Cß)ß<ct(a) of sets Cß of power <a, and we may assume further that

Co = 0 and that, when ß is a limit ordinal, Cß = (J7<ß Cy. Let Ç be a

specializing ideal of 21. We wish to prove by transfinite induction

that there is an ascending chain (fß)ß<ct(a) of functions fß on Cß onto

a member Dß of Q such that
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(1) (»,*Wfl = QUßQteCr

Suppose that ß<cl(a) and (fy\<ß has the desired properties. If ß = 0,

we let/g = 0, and (1) holds by hypothesis. If ß is a positive limit ordi-

nal, letfß = \Jy<ßfy Then since Q is cf(a)-complete,/^ is a function on

Cß onto a member of Q; it is clear that (1) also holds. If ß = 7 + 1, then

since 31 is special, fy may be extended to a function fß on Cß onto a

member of Q such that (1) holds. Our induction is complete, and the

function/=Uß<cfta)/ß satisfies the conclusion of the lemma.

The following much deeper result of Morley and Vaught is proved

in [8] as Theorem 3.5.

Lemma 2. If 31 is infinite, then there are special structures 23 of

arbitrarily large power which are elementarily equivalent to 31.

We also need the following result of Los [6, Theorem 7] and

Tarski [12, Theorem 1.6].

Lemma 3. If every universal sentence which holds in 33 holds in 31,

then there is a structure 33' = 33 such that 31 is isomorphic to a substruc-

ture of 23'.

We shall say that \t is an V„ 3 sentence if it is of the form displayed

in condition (b„) of Theorem A.

Lemma 4. Suppose that 33 is either a finite structure or a special struc-

ture of power ^ k, and that every V„ 3 sentence which holds throughout K

holds in 33. Then 23 is an n-union of some subset of K.

Proof. Let o0, • • • , o„_i be (not necessarily distinct) elements of

1231, and let Y be the set of all universal sentences which hold in the

structure (23, bm)m<n. It is easily seen that the conjunction of any two

members of Y is logically equivalent to a member of Y. Thus, if we can

show that each member of Y is consistent with Th(K), then it will

follow that r is consistent with Th(K).

Let $GT. Then $ is logically equivalent to a member <f>i of Y in

which none of the variables Vo, • • • , fln-i occur. We may form a uni-

versal formula <ï>2 from $1 by replacing the constants corresponding to

bo, • • • , o„_i by the variables v0, • • • , un_i, respectively. (Notice

that although the elements 60, • • • , o„_i need not be distinct, we

have n distinct constants in our formal system corresponding to

them.) Then 3z>o • • • 3vn^2 holds in 33. Moreover, 3v0, ■ • • ,

3zjn_r3>2 is consistent with Th(K), because its negation is an Vn3

sentence which does not hold in 33 and so does not belong to Th(K).

It follows that $1 is consistent with Th(K), and hence $ is consistent
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with Th(K). We conclude that rUTh(i£) is a consistent set of sen-

tences. By the compactness and Löwenheim-Skolem theorems,

rWTh(ÄC) has a model (31, am)m<n of power at most k. Since K is an

elementary class in the wider sense, we have 3t£.K\

We may now apply our previous lemmas. By Lemma 3, there is a

structure (33', cm)m<„=(33, bm)m<H such that (31, am)m<n is isomorphic

to a substructure (31', cm)m<n of (33', cm)m<n. Suppose first that 33 is

special. It is easily seen that since 23 is special, (23, om)m<„ is also spe-

cial. Furthermore, since the power of SI is ^k and the power of 23 is

2:k, we see that the power of 23 is ^ the power of 3Í'. By Lemma 1,

there is a function / on |3I'| into |23| suchthat

(23,  bm, /ö)m<n,ae|ä'|   —   (33',  Cm,  a)m<n.a<E\%\.

The restriction of 33 to the range of / is isomorphic to 31', and hence

to 31. Also, the elements cm, m<n belong to 31', and fcm = bm for each

m<n, so bo, • • • , 0„-i are elements of the range of/. This shows that

the elements bo, • ■ • , 0„-i are included in a substructure of 33 which

is isomorphic to 31 and thus belongs to K.

Let us now consider the other possibility, that 33 is finite. Since

(e.g. by Theorem 1.4 of [l2]) any structure which is elementarily

equivalent to a finite structure is isomorphic to it, (33', cm)m<n is iso-

morphic to the finite structure (33, bm)m<n. Then (31, am)m<n is iso-

morphic to a substructure (31', bm)m<n of (23, bm)m<n. Thus "ñ'EK, 31'

is a substructure of 23, and bo, • ■ • , on-i are elements of 31'.

We have shown in either case that 23 is an «-union of a subset of K,

namely of the set of all substructures of 23 which belong to K.

Proof of Theorem A. Assume the condition (a„). Let Y be the

set of all V„ 3 sentences which hold throughout K. Then any member

of if is a model of Y. Let 23 be a model of Y. By Lemma 2, there is a

structure 23' = 23 which is either finite or a special structure of power

^ k. Now by Lemma 4, 33' is an «-union of some subset of K. Hence by

(a„), 33' belongs to K, and therefore $8EK. We have shown that K is

exactly the class of all models of Y, and so (b„) holds.

Finally, if (b„) holds and S3 is an «-union of some subset of K, then

it is easily checked that every V„ 3 sentence which holds throughout

K holds in 23, and thus 33E.K and (a„) is true.

We conclude by stating a more general "relativized" form of Theo-

rem A. This type of relativization is in the spirit of A. Robinson's

papers [lO] and [ll], where relativized forms of some of the earlier

results mentioned in our introduction are given; see also [6; 12].

Theorem A*. Suppose that K, L are elementary classes in the wider
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sense, and that n is a fixed natural number. Then the following two

conditions are equivalent:

(a*) if 23£L and 23 is an n-union of some subset M of KC\L, then

23GÍC;
(b*) there is a set Y of V„ 3 sentences such that KT\L is the class of

all models ofYVJTh(L).

The proof of Theorem A* is an obvious modification of the proof of

Theorem A. Lemmas 2 and 4 are used in the same way, and the only

change necessary is that at each point in the proof of Theorem A we

must consider only structures which belong to L.
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