ON THE MODULAR GROUP RING OF A »-GROUP
DONALD B. COLEMAN

Let G be a finite p-group, p a prime, and let F be a field of char-
acteristic p. F(G) will denote the group ring of G over F. In the first
section of this note, two elementary results are given that concern
G as a subgroup of the group of units of F(G). In the second section
the center of F(G) is considered.

1. Let G= {gl, g2t g,.}, and let G denote the group of units
of F(G). G consists of those elements x= Y »ag; in F(G) such that
c(x)= D Ta;#0. Moreover, G=G*X F*, where G*={x: xEF(G),
¢(x)=1} and F* is the multiplicative group of nonzero members of
F. Note that G*=9+1, where 9 is the radical of F(G). (See [4, p.
175].) Z will denote the center of G.

THEOREM 1. Let N be the normalizer of G in G. Then N=GZ.

Proor. Clearly GZCN.

Let x= ) a.g;EN. For each g;&G, let g (k=k(j)) be such that
xgy=gix. For each j=1, 2, - - -, n, let v; be the permutation of G
defined by

g = giggi .

vi=7;8;=PB;, where 7;: g—g;g and B8;: g—ggi'. The orders of 7; and
B; are powers of p. Hence v; has order a power of p. Each member of
the group S generated by v1, 2, - + -, v has a similar form, so that
S is a p-group of permutations of G. Moreover xg, =g if and only if
a,=a, whenever gJi =g,. Thus the coefficients of x must agree on the
transitivity classes of S. Since S is a p-group, these classes consist
of either 1 or a power of p elements each. Since F has characteristic
p, and since ¢(x) #0, it follows that some transitivity class of S must
consist of a single element. Hence S has a fixed point, say g.

Then g=g;ggi! for each j=1, 2,..., n, so that g lg;g=g
=x"1gx (j=1,2, - - -, n). Hence x=g¢ (mod C(G)), where C(G) de-
notes the centralizer of G in G; and since C(G)=2Z, it follows that
xEGZ. This completes the proof.

Let (x, y) =x"'y~xy (x, yEG).

CoOROLLARY. Let xE€G, g;EG. If (gj, x) EG, then (g;, x) =(gj, g) for
some gEG.
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Proor. The proof follows that of Theorem 1, except here we only
need to use the fact that v; has a fixed peint.

CoROLLARY. If C is the conjugate class in G containing the element
2EG, then CNG 1s the conjugate class in G that contains g.

For a group H, let H' denote the commutator subgroup of H.
THEOREM 2. GNG' =G/,

Proor. Let I(G’) denote the ideal in F(G) generated by elements
of the form g—1, gEG". Let X = {x+1:xEI(G")}. It is easily veri-
fied that X is a normal subgroup of G (in fact, of G*). According to
[2, p. 36], XNG=G". The quotient algebra F(G)/I(G’) is commuta-
tive [1, p. 2]. Thus for each x, y&g, (x, y)—1EI(G’), so that
(x, ¥)EX;ie., § CX. Hence NG CG'. Obviously G’ Cg'NG. This
completes the proof.

2. Let Cy, Gy, - - -, C: denote the noncentral conjugate classes of
G;foreachi=1,2,---,¢ let K;= Z,ec‘ x. It is well known that if
Z={z1,2, - - -, 2a} is the center of G, then the elements z;, - - - , Z,

K,, - - -, K, form a basis for the center ZF(G) of F(G).

THEOREM 3. (1) K.:K;= D ciuKs, with ¢ EGF(p); i, j=1, 2,
«+ +, t. Thus the sub-(vector) space of F(G) with basis Ky, - - -, K, 1s
an ideal in ZF(G).
(2) Suppose that G satisfies the condition that (a®, b) =1 if and only
if (a,b?)=1;a,bEG. Then K?=0;1=1,2, - - -, ¢t

PRrOOF. (1) Suppose that K:K;= D 7 a,z,+ 2% B.K.; e, B, non-
negative integers.

Let g; and g; be members of C; and Cj, respectively. Then for g}
and gf in C; and Cj, it follows that

*) gt =5€Z

if and only if g% =g7'z,. (Here a®=>b"1ab.)
If for fixed x and 7, there is some y&G such that (*) holds, then

z -1y -1 vy
g6=() %=1(g32),

so that (*) holds for exactly one y modulo C(g;'z,) = C(g;).

Thusif C;={gi*:¢=1,2, - - - ,u} andif C;= {gh:5=1,2, - - - , v},
and if g; and g;'z, are conjugate, then for each x,, there is a unique
¥: (1 =5=v) such that
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8'gi = 2
Hence a,=u=0 (mod p). If g; and gylz, are not conjugate, then 2,
does not occur in the group product C;Cj, so that a,=0.

(2) Let K=K, with C=C; a class containing an element g.

Case 1. Assume that C is a commutative set. Choose a subgroup
H of G containing C(g) such that |H : C(g)l = p. Then let
D={g g, -, g””_l} be the conjugate class in H that contains g,
with g=*=g; i.e., (g, ) =1. Then by hypothesis, (g?, x) =1, so that
for L= Y ,ep y, we have

LP = gP _l.. x—lgpx ..I— e + x—(P—l)ngD—l = pgl’ = 0_

Let C=D,UD,\J - .. UD, with D,N\D;= for 17}, and with
each D; conjugate to D. Then for L;= D _,cp, ¥, we have

K=L+ L+ ---+ L,
so that

K'=Li+Ly+ -+ Lg=0.

Case 2. Assume that g fails to commute with one of its conjugates.
The proof is by induction on n= IG I , the order of G.

Since CCgG’' Cg®, where ® is the Frattini subgroup of G, and since
G is not cyclic, we see that the subgroup W of G generated by C is
proper. Let C decompose into conjugate classes Dy, Ds, - - -, Dy, in
W. As before, let L; denote the sum of elements in D;. If D; is com-
mutative, then L?=0 by Case 1. If not, since D; is a conjugate class
in a p-group of order less than n (which satisfies the standing hypoth-
esis of (2)), then L? =0 by induction. Hence K*»=L}+L5+ - - - +L?
=0. This completes the proof.

Note that a regular p-group satisfies the condition of (2) [3,
p. 185]. If C is a commutative class, then K?>0 if and only if
C(g) =C(gr); in this case K?»=L, where L is the sum of the elements
in the class containing g».

The following theorem is due to Deskins [2, p. 39]. An alternate
proof will be given here and it will be followed by a slightly more
general theorem.

TueoreM 4 (DEsKINS). If G and H are finite Abelian p-groups, and
if F(G)=2F(H) for some field F of characteristic p, then G=2H.

Proor. For any set 4 of group ring elements, let 47= {a”: a€4a}l.
This proof of the theorem is by induction on n= |G| =| H|.
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Under any isomorphism of 4 = F(G) onto B= F(H), it is clear that
A? maps onto B?. But A?= F?(G?) and B?= F?(H?) where F? is the
field of pth powers of members of F. Hence by induction, since
| G?| =| H?| <, we have that G*=H?>. For finite Abelian p-groups G
and H, the two conditions (i) GP=H? and (ii) |G| = | H| are enough
to ensure that G and H are isomorphic.

THEOREM 5. Let G and H be finite p-groups satisfying the condition
of Theorem 3(2). If ZF(G)=XZF(H), then Z}=2Z%, where Z, and Z, de-
note the centers of G and H, respectively. Thus in this case, if Z, and
Z, have the same order, then Z\=2Z,.

Proor. By Theorem 3(2),

[ZF@G)]" = [F(z)]" = F'(Z)
and

[ZF()])’ = [F(2)] = F(Z3).

Thus if ZF(G)=2ZF(H), it follows that Fr(Z})=Fr(Z%). Hence by
Theorem 4, Z5=27%.

In [2, p. 39] it is stated that Theorem 4 fails for arbitrary p-
groups, and the quaternion group and the dihedral group of order 8
are said to have isomorphic group rings over GF(2). This is not,
however, the case. For in the group ring of the quaternion group all
units of order 2 are central. This is not true, of course, for the di-
hedral group.
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