ON THE MODULAR GROUP RING OF A p-GROUP

DONALD B. COLEMAN

Let G be a finite p-group, p a prime, and let F be a field of characteristic p. F(G) will denote the group ring of G over F. In the first section of this note, two elementary results are given that concern G as a subgroup of the group of units of F(G). In the second section the center of F(G) is considered.

1. Let $G = \{g_1, g_2, \dots, g_n\}$, and let \mathfrak{g} denote the group of units of F(G). \mathfrak{g} consists of those elements $x = \sum_{i=1}^{n} \alpha_i g_i$ in F(G) such that $c(x) = \sum_{i=1}^{n} \alpha_i \neq 0$. Moreover, $\mathfrak{g} = \mathfrak{g}^* \times F^*$, where $\mathfrak{g}^* = \{x: x \in F(G), c(x) = 1\}$ and F^* is the multiplicative group of nonzero members of F. Note that $\mathfrak{g}^* = \mathfrak{N} + 1$, where \mathfrak{N} is the radical of F(G). (See [4, p. 175].) \mathbb{Z} will denote the center of \mathfrak{g} .

THEOREM 1. Let N be the normalizer of G in G. Then N = GZ.

Proof. Clearly $GZ \subset N$.

Let $x = \sum \alpha_i g_i \in \mathbb{N}$. For each $g_j \in G$, let g_k (k = k(j)) be such that $xg_k = g_j x$. For each $j = 1, 2, \dots, n$, let γ_j be the permutation of G defined by

$$g^{\gamma}_i = g_i g g_k^{-1}$$
.

 $\gamma_i = \tau_j \beta_j = \beta_j \tau_j$, where $\tau_j : g \rightarrow g_j g$ and $\beta_j : g \rightarrow g g_k^{-1}$. The orders of τ_j and β_j are powers of p. Hence γ_j has order a power of p. Each member of the group S generated by $\gamma_1, \gamma_2, \cdots, \gamma_n$ has a similar form, so that S is a p-group of permutations of G. Moreover $xg_k = g_i x$ if and only if $\alpha_r = \alpha_s$ whenever $g_s^{\gamma_j} = g_r$. Thus the coefficients of x must agree on the transitivity classes of S. Since S is a p-group, these classes consist of either 1 or a power of p elements each. Since F has characteristic p, and since $c(x) \neq 0$, it follows that some transitivity class of S must consist of a single element. Hence S has a fixed point, say g.

Then $g = g_j g g_k^{-1}$ for each $j = 1, 2, \dots, n$, so that $g^{-1} g_j g = g_k = x^{-1} g_j x$ $(j = 1, 2, \dots, n)$. Hence $x \equiv g \pmod{C(G)}$, where C(G) denotes the centralizer of G in G; and since C(G) = Z, it follows that $x \in GZ$. This completes the proof.

Let $(x, y) = x^{-1}y^{-1}xy$ $(x, y \in \S)$.

COROLLARY. Let $x \in \mathcal{G}$, $g_j \in G$. If $(g_j, x) \in G$, then $(g_j, x) = (g_j, g)$ for some $g \in G$.

Received by the editors February 27, 1963.

PROOF. The proof follows that of Theorem 1, except here we only need to use the fact that γ_i has a fixed point.

COROLLARY. If C is the conjugate class in \mathfrak{F} containing the element $g \in G$, then $C \cap G$ is the conjugate class in G that contains g.

For a group H, let H' denote the commutator subgroup of H.

Theorem 2. $G \cap \mathfrak{G}' = G'$.

2. Let C_1, C_2, \dots, C_t denote the noncentral conjugate classes of G; for each $i=1, 2, \dots, t$, let $K_i = \sum_{x \in C_i} x$. It is well known that if $Z = \{z_1, z_2, \dots, z_m\}$ is the center of G, then the elements $z_1, \dots, z_m, K_1, \dots, K_t$ form a basis for the center ZF(G) of F(G).

THEOREM 3. (1) $K_iK_j = \sum_k c_{ijk}K_k$, with $c_{ijk} \in GF(p)$; $i, j = 1, 2, \cdots, t$. Thus the sub-(vector) space of F(G) with basis K_1, \cdots, K_t is an ideal in ZF(G).

(2) Suppose that G satisfies the condition that $(a^p, b) = 1$ if and only if $(a, b^p) = 1$; $a, b \in G$. Then $K_i^p = 0$; $i = 1, 2, \dots, t$.

PROOF. (1) Suppose that $K_iK_j = \sum_{1}^{m} \alpha_r z_r + \sum_{1}^{t} \beta_s K_s$; α_r , β_s nonnegative integers.

Let g_i and g_j be members of C_i and C_j , respectively. Then for g_i^x and g_j^y in C_i and C_j , it follows that

$$g_i g_j = z_r \in Z$$

if and only if $g_i^{xy^{-1}} = g_j^{-1}z_r$. (Here $a^b = b^{-1}ab$.)

If for fixed x and r, there is some $y \in G$ such that (*) holds, then

$$g_{i}^{x} = (g_{i}^{-1})^{y} \cdot z_{r} = (g_{i}^{-1} z_{r})^{y},$$

so that (*) holds for exactly one y modulo $C(g_j^{-1}z_r) = C(g_j)$.

Thus if $C_i = \{g_j^{x_0}: q = 1, 2, \dots, u\}$ and if $C_j = \{g_j^{y_0}: s = 1, 2, \dots, v\}$, and if g_i and $g_j^{-1}z_r$ are conjugate, then for each x_q , there is a unique y_i $(1 \le s \le v)$ such that

$$g_i^{x_q}g_i^{y_s} = z_r.$$

Hence $\alpha_r = u \equiv 0 \pmod{p}$. If g_i and $g_j^{-1}z_r$ are not conjugate, then z_r does not occur in the group product C_iC_j , so that $\alpha_r = 0$.

(2) Let $K = K_i$, with $C = C_i$ a class containing an element g.

Case 1. Assume that C is a commutative set. Choose a subgroup H of G containing C(g) such that |H:C(g)|=p. Then let $D=\{g,\,g^x,\,\cdots,\,g^{x^{p-1}}\}$ be the conjugate class in H that contains g, with $g^{x^p}=g$; i.e., $(g,\,x^p)=1$. Then by hypothesis, $(g^p,\,x)=1$, so that for $L=\sum_{y\in D}y$, we have

$$L^{p} = g^{p} + x^{-1}g^{p}x + \cdots + x^{-(p-1)}g^{p}x^{p-1} = pg^{p} = 0.$$

Let $C = D_1 \cup D_2 \cup \cdots \cup D_q$, with $D_i \cap D_j = \emptyset$ for $i \neq j$, and with each D_i conjugate to D. Then for $L_i = \sum_{y \in D_i} y$, we have

$$K = L_1 + L_2 + \cdots + L_q,$$

so that

$$K^{p} = L_{1}^{p} + L_{2}^{p} + \cdots + L_{q}^{p} = 0.$$

Case 2. Assume that g fails to commute with one of its conjugates. The proof is by induction on n = |G|, the order of G.

Since $C \subset gG' \subset g\Phi$, where Φ is the Frattini subgroup of G, and since G is not cyclic, we see that the subgroup W of G generated by C is proper. Let C decompose into conjugate classes D_1, D_2, \cdots, D_w in W. As before, let L_i denote the sum of elements in D_i . If D_i is commutative, then $L_i^p = 0$ by Case 1. If not, since D_i is a conjugate class in a p-group of order less than n (which satisfies the standing hypothesis of (2)), then $L_i^p = 0$ by induction. Hence $K^p = L_1^p + L_2^p + \cdots + L_w^p = 0$. This completes the proof.

Note that a regular p-group satisfies the condition of (2) [3, p. 185]. If C is a commutative class, then $K^p \neq 0$ if and only if $C(g) = C(g^p)$; in this case $K^p = L$, where L is the sum of the elements in the class containing g^p .

The following theorem is due to Deskins [2, p. 39]. An alternate proof will be given here and it will be followed by a slightly more general theorem.

THEOREM 4 (DESKINS). If G and H are finite Abelian p-groups, and if $F(G) \cong F(H)$ for some field F of characteristic p, then $G \cong H$.

PROOF. For any set A of group ring elements, let $A^p = \{a^p : a \in A\}$. This proof of the theorem is by induction on n = |G| = |H|.

Under any isomorphism of A = F(G) onto B = F(H), it is clear that A^p maps onto B^p . But $A^p = F^p(G^p)$ and $B^p = F^p(H^p)$ where F^p is the field of pth powers of members of F. Hence by induction, since $|G^p| = |H^p| < n$, we have that $G^p \cong H^p$. For finite Abelian p-groups G and H, the two conditions (i) $G^p \cong H^p$ and (ii) |G| = |H| are enough to ensure that G and H are isomorphic.

THEOREM 5. Let G and H be finite p-groups satisfying the condition of Theorem 3(2). If $ZF(G)\cong ZF(H)$, then $Z_1^p\cong Z_2^p$, where Z_1 and Z_2 denote the centers of G and H, respectively. Thus in this case, if Z_1 and Z_2 have the same order, then $Z_1\cong Z_2$.

Proof. By Theorem 3(2),

$$[ZF(G)]^p = [F(Z_1)]^p = F^p(Z_1^p)$$

and

$$[ZF(H)]^p = [F(Z_2)]^p = F^p(Z_2^p).$$

Thus if $ZF(G)\cong ZF(H)$, it follows that $F^p(Z_1^p)\cong F^p(Z_2^p)$. Hence by Theorem 4, $Z_1^p\cong Z_2^p$.

In [2, p. 39] it is stated that Theorem 4 fails for arbitrary p-groups, and the quaternion group and the dihedral group of order 8 are said to have isomorphic group rings over GF(2). This is not, however, the case. For in the group ring of the quaternion group all units of order 2 are central. This is not true, of course, for the dihedral group.

BIBLIOGRAPHY

- 1. D. B. Coleman, Finite groups with isomorphic group algebras, Trans. Amer. Math. Soc. 105 (1962), 1-8.
- 2. W. E. Deskins, Finite Abelian groups with isomorphic group algebras, Duke Math. J. 23 (1956), 35-40.
 - 3. M. Hall, The theory of groups, Macmillan, New York, 1959.
- 4. S. A. Jennings, The structure of the group ring of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175-185.

VANDERBILT UNIVERSITY