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Let G be a finite />-group, p a prime, and let F be a field of char-

acteristic p. F(G) will denote the group ring of G over F. In the first

section of this note, two elementary results are given that concern

G as a subgroup of the group of units of F(G). In the second section

the center of F(G) is considered.

1. Let G= {gi, g2, • ■ ■ , gn}, and let g denote the group of units

of F(G). g consists of those elements x= Ei a»g¿ m F(G) such that

c(x)=Yl1ai^0. Moreover, 8 = g*XP*, where g*= {x: xEF(G),

c(x) = 1} and F* is the multiplicative group of nonzero members of

F. Note that Çj* = ÏÏL + l, where 31 is the radical of F(G). (See [4, p.

175].) Z will denote the center of g.

Theorem 1. Let N be the normalizer of G in g. Then N = GZ.

Proof. Clearly GZC N.

Let x= ^aigiEN. For each gjEG, let gk (k = k(j)) be such that

xgk = gjX. For each j = i, 2, • ■ ■ , n, let %■ be the permutation of G

defined by

gy¡ = giggk1.

yj*=Tjßj = ßjTj, where r¿: g—>g,g and ß,: g—^ggiT1- The orders of t¡ and

ßi are powers of p. Hence y¡ has order a power of p. Each member of

the group 5 generated by 71, y2, • ■ ■ , yn has a similar form, so that

S is a ¿>-group of permutations of G. Moreover xgk = g{x if and only if

ar = a¡ whenever g]' =gr. Thus the coefficients of x must agree on the

transitivity classes of S. Since 5 is a ¿»-group, these classes consist

of either 1 or a power of p elements each. Since F has characteristic

p, and since c(x) ?¿0, it follows that some transitivity class of 5 must

consist of a single element. Hence 5 has a fixed point, say g.

Then g^gjggr1 for each j=l, 2, • • • , n, so that g~1gjg = gk

— x~1gix (j=l, 2, - - - , n). Hence x=g (mod C(G)), where C(G) de-

notes the centralizer of G in g ; and since C(G) = Z, it follows that

xEGZ. This completes the proof.
Let (x, y) = x~ly~lxy (x, yGg).

Corollary. Let xGg, gjEG. If (gh x)EG, then (g¡, x) = (gh g) for
some gEG.
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Proof. The proof follows that of Theorem 1, except here we only

need to use the fact that y¡ has a fixed point.

Corollary. If C is the conjugate class in g containing the element

gEG, then CC\G is the conjugate class in G that contains g.

For a group H, let H' denote the commutator subgroup of H.

Theorem 2. GHg' = G'.

Proof. Let I(G') denote the ideal in F(G) generated by elements

of the form g— 1, gEG'. Let X= {x + 1: xEI(G')}. It is easily veri-

fied that X is a normal subgroup of g (in fact, of g*). According to

[2, p. 36], XC\G = G'. The quotient algebra F(G)/I(G') is commuta-

tive [l, p. 2]. Thus for each x, yEQ, (x, y) — lEI(G'), so that

(x, y)EX; i.e., q'EX. Hence QT\GEG'. Obviously G'E<3'r\G. This
completes the proof.

2. Let Ci, C2, ■ ■ ■ , Ct denote the noncentral conjugate classes of

G; lor each *= 1, 2, • • • , t, let Kt= 2*ec,- *• ItlS wen< known that if

Z= {zi, z2, • • • , zm] is the center of G, then the elements zu ■ ■ ■ , zm,

Ki, ■ ■ • , Kt form a basis for the center ZF(G) of F(G).

Theorem 3. (1) KiKj=YJkCiikKk, with djkEGF(p); i, /=1, 2,

■ ■ ■ , t. Thus the sub-(vector) space of F(G) with basis K\, ■ • • , Kt is

an ideal in ZF(G).

(2) Suppose that G satisfies the condition that (ap, b) = i if and only

if (a,b>) = l;a,bEG. Then Kvt =0; i= 1, 2, ■ ■ ■ , t.

Proof. (1) Suppose that KiKj=^y arzr+^2[ßtK.; ar, ß, non-

negative integers.

Let gi and g,- be members of C¿ and C,, respectively. Then for gzt

and gj in d and C¡, it follows that

(*) Hi  =ZrEZ

if and only if gf~l = gjlzr. (Here ab = b~1ab.)

If for fixed x and r, there is some yEG such that (*) holds, then

gi=   (gi   )"-Zr =   (gj   Zr)\

so that (*) holds for exactly one y modulo C(gjizr) = C(g,).

ThusifC,= {gf«:3«l,2, • • • ,u\ andif C,= {$': 5 = 1, 2, • • • ,v],
and if g¿ and gjlzr are conjugate, then for each x„, there is a unique

y» nus-èv) such that
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gigj   -= Zr-

Hence ar = M=0 (mod p). If g< and gT^zT are not conjugate, then z,

does not occur in the group product CiC¡, so that ar = 0.

(2) Let K — Ki, with C= C¿ a class containing an element g.

Case 1. Assume that C is a commutative set. Choose a subgroup

H oí G containing C(g) such that | H: C(g) | = p. Then let

D=\g, gx, • • • , g^'1} be the conjugate class in H that contains g,

with gx" = g; i.e., (g, xp) = l. Then by hypothesis, (gp, x) = l, so that

for L = Ei/eD y, we have

Lp = gp + x~1gpx + - - - + x~<-p~1)gpx"~1 = pg" = 0.

Let C = Di\JD2\J ■ ■ ■ VJDq, with D,nP3 = 0 for *Vj, and with
each Di conjugate to D. Then for Li= Ei/eOi J> we have

K = Li + L2+ ■ ■ ■ + Lq,

so that

KP = L\ + L\ + ■ ■ ■ + L\ = 0.

Case 2. Assume that g fails to commute with one of its conjugates.

The proof is by induction on n= \ G\, the order of G.

Since CEgG' Eg$, where $ is the Frattini subgroup of G, and since

G is not cyclic, we see that the subgroup IF of G generated by C is

proper. Let C decompose into conjugate classes Di, D2, ■ ■ ■ , Dw in

TF. As before, let L¿ denote the sum of elements in Di. If P.- is com-

mutative, then LV = Q by Case 1. If not, since D, is a conjugate class

in a ¿»-group of order less than n (which satisfies the standing hypoth-

esis of (2)), thenC? = 0 by induction. Hence KP = LV + L\ + ■ ■ ■ +UW

= 0. This completes the proof.

Note that a regular ¿«-group satisfies the condition of (2) [3,

p. 185]. If C is a commutative class, then Kp^0 if and only if

C(g) = C(gp) ; in this case Kp — L, where L is the sum of the elements

in the class containing gp.

The following theorem is due to Deskins [2, p. 39]. An alternate

proof will be given here and it will be followed by a slightly more

general theorem.

Theorem 4 (Deskins). If G and H are finite Abelian p-groups, and

if F(G)=F(H) for some field F of characteristic p, then G^H.

Proof. For any set A of group ring elements, let Ap= {ap: aEA }.

This proof of the theorem is by induction on n= \ G\ =\h\.
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Under any isomorphism of A = F(G) onto B = F(H), it is clear that

Ap maps onto Bp. But AP = FP(GP) and BP = FP(HP) where 2^ is the

field of pth powers of members of F. Hence by induction, since

\GP\ =\Hp\ <n, we have that GP=HP. For finite Abelian ^-groups G

and H, the two conditions (i) GP=HP and (ii) [Gl =\h\ are enough

to ensure that G and H are isomorphic.

Theorem 5. Let G and H be finite p-groups satisfying the condition

of Theorem 3(2). If ZF(G)^ZF(H), then Z\^Z\, where Zr and Z2 de-
note the centers of G and H, respectively. Thus in this case, if Z\ and

Z2 have the same order, then Z\=Z2.

Proof. By Theorem 3(2),

[ZF(G)\V - [F(Zi)]P = F\Z\)

and

[ZF(H)]P = [F(Z2)]P = F\f2).

Thus if ZF(G)^ZF(H), it follows that Fp(Zl)^Fp(Zl). Hence by
Theorem 4, ZV£±Z\.

In [2, p. 39] it is stated that Theorem 4 fails for arbitrary p-

groups, and the quaternion group and the dihedral group of order 8

are said to have isomorphic group rings over GF(2). This is not,

however, the case. For in the group ring of the quaternion group all

units of order 2 are central. This is not true, of course, for the di-

hedral group.
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