
REMARK ON LOOP SPACES

P. J. HILTON1

In [l] the authors prove two theorems on polyhedra with ho-

mology of finite type.

Theorem A. // (X, p) is a space with comultiplication, if X is

(q—1)-connected and dim X^3q — 3, then (X, p) is equivalent to a sus-

pension structure.

Theorem B. If dim A ^ 3q — 2 and B is (q — 1)-connected, then every

homomorphism 'SA—>S5 is in a suspension class.

In this note we make some remarks on the duals of these theorems.

The dual of Theorem A reads as follows (we need here no assumption

on the homology of X).

Theorem C. If (X, p) is a space with multiplication, if X is (q—1)-

connected, q>l, and irn(X) =0 for »2:3g, then (X, p) is equivalent to a

loop-space structure.

This theorem may be proved as an application of Stasheff's theory

of yl „-spaces, and has certainly been noted by Stasheff. A method of

proof was outlined in [3] in order to prove Corollary 3.12 of that

paper, but the proof was defective.2 We give here a proof whose

structure is essentially dual to that of the structure of the proof of

Theorem A in [l], but which is much simpler in detail. Just as in

Theorem A we presented X as the suspension of a (generalized)

homology section of its coprojective plane, so here we present it as

the loop space of a homotopy section of its projective plane.

The dual of Theorem B is Sugawara's Theorem (7.4 of [8]).

Theorem D. If irn(A) = 0, n^3q—l, and B is (q — 1)-connected,

q>l, then every homomorphism Q,B—*Q,A is homotopic to a loop map.

It turns out, similarly, that the dual version of the proof of Theo-

rem B is much simpler than the proof of Theorem B itself, owing to a

fortuitous circumstance which we discuss at the end of this note.
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1 The author was supported by NSF grant G 15984 during the preparation of this

note.

8 This came to light when I. Berstein noticed the corresponding defect in an early

version of the proof of Theorem A.
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In the proofs of Theorems C and D we use the Blakers-Massey

Theorem stated in terms of the fibre and cofibre of an arbitrary map.

It seems to us that this formulation might have some independent

interest. It has long been recognized (see, e.g., [S]) that the Serre

Theorem (Corollary 1, p. 469 of [6]) is dual to the Blakers-Massey

Theorem, so we set it down here alongside the Blakers-Massey Theo-

rem, using the same formulation, although we have no need of it in

proving Theorems C and D.

Let/: P—>Q be a map with fibre F and cofibre C. We write this as

a sequence

i      I      J
(1) F^P^Q^C.

Associated with (1) there is a map u: F^ilC with adjoint «iSf

—>C; ü may also be regarded as dual to u. To describe u it is sufficient

to consider the case when/ is a cofibration inclusion. Then C=Q/P

and F = E(Q; P, *), the space of paths on Q beginning in P and end-

ing at the base point. Then the identification map j: Q—>C plainly in-

duces u: F—+QC.

We may now state the Blakers-Massey and Serre Theorems in

terms of (1) and the associated maps u, û.

Proposition 2. Suppose in (1) that f is (k — 1)-connected and P is

(I—T)-connected, k^2, /2:1. Then u: F-+ÜCis (k+1 — 2)-connected.

Proposition 3. Suppose in (1) that f is (k —I)-connected and Q is

(I—I)-connected, k^3, T^2. Then3 ü-.'SF—^C is (k+1—1)-connected.

Of course, Proposition 3 differs in form very much from the original

statement of Serre's Theorem (Corollary 1, p. 469 of [ó]); we have

included it here in this form to demonstrate its relation to Proposition

2 which closely resembles the original Blakers-Massey Theorem

(Theorem II of [2]). Serre's Theorem actually relates the homology

of i and Q in (1) and yields Proposition 3 through the transgression

square; see also Proposition 3 of [4].

We now consider the Sugawara fibration [7] of an if-space (X, ß).

This is a map h: 2(X # Z)->SA with fibre X and cofibre XP(2), the

project!ve plane of X. Thus we have the special case of (1),

(4) X^S(Z#X)->SX^XP(2).

3 We may take k^2 if we are content with the homology-connectedness of i2.

[Added in proof. These propositions, and other results discussed in this note, have been

strengthened or generalized by Ganea; see his forthcoming paper, A generalization of

the homology and homotopy suspension.)
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Then (4) has two features of great importance to us in the proof we

give of Theorem C. First we have i^O. Second, the connecting map

Ö2X—>X of the fibration h is a left-inverse of the canonical embed-

ding e: X->iïZX. We deduce that if u: X-^ÜXP(2) is associated with

(4), then (up to homotopy)

(5) a =j:2X^>XP(2).

In fact, (5) is just a special case of the more general

Proposition 6. //, in (1), i^O then the connecting map QQ—>F has a

left-inverse s: F-^QQ and w~(í2/*)s: F^ÜC.

Proof. Consider the diagram

Ui(A,Q)-^Ui(A,f)¿-U(A,F)

\j* iv     /     \w*

MA, o
where / belongs to the homotopy sequence of /, e is the excision iso-

morphisn, and rj is induced by the map

p p_^ *

if     I
Q-tC.

j

Then u is defined so that the right-hand triangle commutes and it is

trivial that the left-hand triangle commutes. Also e~1J is induced by

the connecting map.

Now suppose î~0. Then if 1 EY1(F, F), e(l) = J {s}, where 5: F-+ÜQ

is a left inverse of the connecting map and j*{s} =ne(l) = {»}, prov-

ing the proposition.

We have only to recall that j( = u): X—>tiXP(2) is a homomor-

phism to complete the proof of Theorem C. For if X is (q— ̂ -con-

nected then in (4) h is g-connected and S(X jf X) is 2g-connected.

Thus j: X—>QXP(2) is 3g-connected by Proposition 2. Let Z be the 3q-

homotopy section of XP(2); thus there is a map p: XP(2)—>Z such

that

p*:in(XP(2))9äTi(Z),        i<3q,

in(Z) = 0, i > 3q.

Then (Qp)j: X—^ilZ is certainly a homomorphism of ii-spaces; and if
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irn(X) =0, n~^3q, then (tip)] induces an isomorphism of all homotopy

groups and so is a homotopy equivalence. This completes the proof

of Theorem C.

Remark. We can improve Theorem C slightly by allowing 7r39(X)

5^0, provided that it is free abelian. We do not know the best possible

result here (as we do in the dual case) ; if we take

X = K(Zh 3; Zh 11; (ßuY)

where u is the fundamental class in H3(Zz, 3; Z%) and ß is the Bock-

stein operator then X is not equivalent to a loop space, X is 2-con-

nected, so that g = 3, and irn(X) =0 for4 «^12 = 3^ + 3.

We turn now to the proof of Theorem D. If we take X = tiA then

the fibration A: 2(Q.4 § QA) —»2ÍM in (4) is induced by the canonical

map e: 2Q4 —>A. Thus we have, up to homotopy, a fibration

(7) Z(íL4#Q4)-»za¿-^i4.

Now if 4>: X—*Y is a homomorphism of ü-spaces, then the diagram

h
2(X # X)-> 2X

|ZO#*) 12*
2(F#F)->2F

is homotopy-commutative. Thus if <p: ÜB—>ÜA is a homomorphism

we have a diagram

hs                        eB
2(05 # ÜB)->SQB->B

(8) i^(<t>#4>)       ä 12*

2(04 # ÍL4)-> 2ÍL4-> 4 ,

in which the rows are fibration sequences and the square homotopy-

commutes. It follows that the map êa(2$) : 2Í2/J—>A is nullhomotopic

on the fibre of eB. Now if B is (q— 1) -connected then Z(ß73 # ß/3) is

(2q — 2)-connected. Thus Theorem 1 of [4] enables us to infer im-

mediately that if Tn(A) = 0, n^3q— 1, then there exists a map

/: B—>A with/(ei?)~e¿(20). That is, <£~ß/and Theorem D is proved.

The simplicity of the proof of Theorem D rests on the fact that the

fibre of e: 204—>A is a functor of ÜA, together with the fact that the

4 W. Browder has shown the author that K{ZZ, 3; Z%, 10; \u(ßuf), where X is

induced by the coefficient homomorphism Z3ÇLZ9 is an if-space but not a loop space.

This narrows the gap by one dimension.
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homomorphic property of <p is reflected in the commutativity of the

square in (8). However in the dual problem we do not seem to have

so simple a situation. We constructed in [l], for any if'-space X, a

map

h': nx-+n(x\>x)

with the property that if <£: X—>F is a homomorphism of iT-spaces

then the diagram

h'
ÜX->Q(Xb X)

100 lSl(4>\><t>)

ÜY->fi(Fb Y)

homotopy-commutes. However, if X = 1iA then h' does not appear

to be the cofibre projection associated with the canonical embedding

e: A—>ÇiEA, and we were obliged to demonstrate in [l ] that h' induces

a map from the cofibre of e' to ñ(SA \> 2A) which is sufficiently

highly connected to yield a proof of Theorem B. It appears then

natural to raise the questions whether the cofibre of e' is a functor of

~ZA and how far it can differ in homotopy type from ti(EA b 2/1 ).6
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