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Introduction. In his monograph [l], Császár introduced the notion

of a syntopogenous space, which generalized the notions of a topo-

logical space, a proximity space, and a uniform space. Although

Császár was able to obtain many of the usual theorems of general

topology in this more general setting, the basic topological notion of

connectedness was not introduced at all. Mrówka and Pervin [2]

have discussed the concepts of 11-connectedness and S-connectedness

for uniform and proximity spaces, respectively. In this paper we shall

give a definition for connectedness in syntopogenous spaces and

show that it agrees with the corresponding properties in topological,

proximity, and uniform spaces. Furthermore, we shall obtain some of

the theorems concerning connected sets from general topology in

this more general setting. Throughout, we shall use the notation due

to Császár and assume a familiarity with his monograph [l].

1. Definitions and elementary properties. Let [E, S] be an arbi-

trary syntopogenous space. Two subsets A and B of E will be called

S-separated iff A<E — B and B<E — A for some <G§- The space

[E, S] will be said to be ^-connected iff it is not the union of two non-

empty S-separated subsets. This is clearly equivalent to the require-

ment that there is no nonempty proper subset A of E such that

A<A and E-A<E-A for some <G§.

Theorem 1.1. [E, s] is ¡¡-connected iff every (S, £))-continuous map-

ping of E into a discrete space [D, £>] is constant.

Proof. Suppose / is an (S, £>)-continuous mapping of E into the

discrete space [D, 35], and suppose pEf(E). Since £>= {c} is the

discrete structure, p<p since {p} C {p} and D— {p} <D— [p\ since

D—{p\ED—{P\- Since/ is (S, D)-continuous, there must exist

some <'GSsuch thatf~l(p) <'f~l(p) andE-f~l(p) <'£-/"l{p). Thus

if/ was not constant,/-1^) would be a nonempty proper subset, and

thus [E, S] would not be S-connected. Conversely, if A and B are

S-separated subsets whose union is E, the mapping/ of E into the two-

point discrete space [{a, b},E] defined by setting f(A)=a and

f(B)=b is (S, D)-continuous. If A and B are nonempty, it will be

nonconstant.
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We note that [D, £>] could always be taken to be a two-point dis-

crete space with no loss of generality. For symmetric spaces [E, S],

S-connectedness is equivalent to the requirement that there is no non-

empty proper subset AEE such that A<A for some <£S.

Corollary 1.2. If f is an (S, S')-continuous mapping of [E, S] onto

[E', S'] and [E, s] is S-connected, then [£', S'] is S''-connected.

A subset A of [E, S] will be called S-connected iff [A, s\A] is

S | A -connected (see [l, p. 94]). It follows immediately that A is

S-connected iff it is not the union of two nonempty S-separated sub-

sets.

Theorem 1.3. If A is an S-connected subset of [E, S] and A EMVJN

where M and N are S-separated subsets of E, then either A EM or

A EN.

Proof. By Axiom (03) of [l, p. 21], AC\M and AC\N will be
S-separated subsets of A whose union will be A. If A is S-connected,

one of these sets must be empty and so the conclusion follows.

Corollary 1.4. If A and B are two S-connected subsets of [E, s]

which are not S-separated, then A\JB is S-connected.

Proof. If we write AVJB = MKJN where M and N are S-separated

subsets of E, then, by the previous theorem, either A and B are S-

separated or else one of the subsets M and N must be empty.

Corollary 1.5. If A is an S-connected subset of [E, S] and BEE

is such that A EBEA, then B is S-connected.

Proof. We note that the closure of A, denoted A, is {pEE: p<M

for some <ES and MEE implies MC\Atí0\ ; that is, those points

p for which every neighborhood intersects A. If we write B as the

union of two S-separated subsets M and A7, then, by the previous

theorem, either A EM or A EN. Let us assume that A EM. Now if

PEN, then pEB and, since M and N are S-separated, p<E — M

EE — A which implies that p<E — A for some <ES by Axiom (03).

Now pEÄ and p<E-A imply that (E-A)C\A^0, which is a

contradiction. Hence N must be empty and so B is S-connected.

Corollary 1.6. // {^4X:XGA} is a family of S-connected subsets of

[E, S], and A^0 (X0£A) is not S-separated from any A^, then A = Ux6a A*

is S-connected.

Proof. This follows immediately from the above theorem.

In particular, if ÍVsa^x?^ in the last corollary, then A is S-
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connected. From this it follows that the union of all S-connected sub-

sets of E which contain a fixed point pEE is an S-connected set

which we will call the S-component of p, denoted by C§(p). It is

clearly the maximal S-connected set containing p.

By Corollary 1.4, if Cg(p) and C§(g) are not S-separated, then

their union must be S-connected, and by the maximality of com-

ponents, we must have Cg(p) = Cg(q). Thus a syntopogenous space

[E, S] is divided up into disjoint, S-separated S-components. Clearly,

by Corollary 1.5, these components are closed sets.

A final elementary theorem with a topological analogy concerns

the product of connected spaces. If { [E\ Sx] }x<ea is a nonempty fam-

ily of nonempty syntopogenous spaces, then their product space

[E, S] where £ = Xxea£x and S = XxsaSx has been defined (see [l,

p. 115]).

Theorem 1.7. The product space [E, S] is S-connected iff each space

[Ex, Sx] is Sx-connected.

Proof. Since the projections are (S, Sx)-continuous, if [E, S] is

S-connected, then each [Ex, Sx] is Sx-connected by Corollary 1.2. Con-

versely, suppose each [£x, Sx] is Sx-connected. Let {zxj be a fixed

point of Xxea£x. By (11.29) of [l, p. 122], the subset Eß of the

product space consisting of all points {xx} such that xx = zx if X?¿/3

while Xs may be any point of Es is isomorphic to F?, and hence is an

S-connected set containing {zxj. Clearly, for any finite number of

indices ßu ß2, • • ■ , ßm, EfflXEfiiX • • • XEßm, that is, the set of all

points {xx} such that xx = zx if X^ßi, ß2, ■ ■ ■ , ßm, is S-connected and

contains {zxJ. Since the S-neighborhoods of points include isomorphic

copies of all but a finite number of the coordinate spaces (see (11.14)

of [l, p. 117]), sets of this form are dense in E and so, by Corollary

1.5, [E, S] is S-connected.

2. Real functions and applications. It is immediate from the defini-

tion that S-connectivity is equivalent to Sc-connectivity and S'-con-

nectivity (see (8.5) and (8.30) of [l, pp. 73, 76]). Furthermore, if S is

coarser than S' and a space is S'-connected, then it is clearly S-con-

nected (see (10.10) of [l, p. 105]). From this it follows that if a

space is S*-, Sb-, or Sp-connected, then it is S-connected.

Theorem 2.1. // [E, s] is S-connected and compact, then it is Stp-

connected.

Proof. Let/ be any (Sip, 3D)-continuous mapping of E into a dis-

crete space [D, 3D]. Since S is compact, S' is compact by (15.49) of
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[l, p. 197] so/is (S\ »)-continuous by (15.57) of [l, p. 198]. Since

E is S-connected, it is S'-connected and therefore/ must be constant

by Theorem 1.1.

We note that this theorem generalizes the property of uniform

spaces which states that a compact uniform space is uniformly con-

nected iff it is connected.

Let us turn now to a characterization of S-connectedness in terms

of real-valued functions. As is well known, the connected (i.e., 3C,p-

connected in the notation of [l, p. 81 ]) subsets of the real line are the

intervals (in which statement we will include the degenerate cases

of the single point sets and the empty set). As was shown by Mrówka

and Pervin [2], the equiconnected and uniformly connected subsets

(i.e., 3C1- and 3C-connected in [l, p. 80]) are those sets which are dense

in an interval.

Lemma 2.2. A subset of the real line is á'-connected (see [l, p. 79])

iff it is dense in an interval.

Proof. A set which is dense in an interval is 3C-connected as men-

tioned above, hence, since ä,b = 3C by definition, it is ¿('-connected by

the discussion at the beginning of this section. Now suppose A is a

subset of the real line which is not dense in an interval. Then there

exists a point z and an e>0 such that AC\(z — e, z+t) = 0 but

Ai^(— », z)t£0téAC\(z, +ao). We then have, in the notation of

(2.3) of [1, p. 22],

AC\(-^,z- t]<tE- (AC\[z + t, + oo)).

Thus

A C\ (- oo, z - e] <* E - (A H [z + «, + oo))

and since ¿' is symmetric, the sets A (~\ (— <x>, z — e] and

Ai~\[z + e, + oo) are ¿'-separated. Thus A is not ¿'-connected.

It is interesting to note that every subset of the real line is â-

connected (see [l, p. 63]). The above characterizations of various

connectivities for real sets leads to the following result.

Theorem 2.3. A syntopogenous space [E, s] is S-connected iff every

real-valued (S, S')-continuous mapping has a range which is S'-con-

nected, where S' may be â", â'h = X, 3C', or X.lp.

Proof. By Corollary 1.2, if [E, S] is S-connected, then its image

under an (S, S')-continuous mapping is certainly S'-connected. Now

suppose [E, S ] is not S-connected and let A and B be two S-separated
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subsets whose union is E. Thus we have A<E — B and B<E — A for

some <GS. If we define a mapping/ of E into the subset {0, l} of the

reals by setting f(p) — 0 if pEA and f(p) = 1 if pEB, then the range
of this function is not S'-connected for S' equal to a*, 3C, 3C', or 3C'P.

However, / is (S, S')-continuous since each of these structures re-

stricted to the set {0, 1} is just the discrete structure.

It is clear from Theorem 1.1 that our definition of S-connectedness

agrees in the case of uniform and proximity spaces with the usual

definition which is that every uniformly continuous or equicontinuous

mapping into a discrete space is constant. In particular, since a quasi-

uniform space [E, 'It] is associated in a one-to-one fashion to some bi-

perfect syntopogenous space [E, s], [E, 11 ] is 11-connected iff [E, s]

is S-connected. Hence, two subsets A and B of E are It-separated iff

U[A\C\B = AC\U[B\ = 0 for some UE% and [E, ll] is OL-con-
nected iff it is not the union of two nonempty 11-separated subsets.

For a uniform space [E, ll], A and B are 1l-separated iff U[A ]C\ U[B]

= 0 for some I7G1I. On the other hand, each proximity space [E, 8]

is associated with a unique simple symmetric syntopogenous space

[E, S], and [E, 8] is 5-connected iff [E, S] is S-connected. Hence, two

subsets A, BEE are S-separated iff A8B, and [E, 8] is 5-connected iff

it is not the union of two nonempty 5-separated subsets.

In the case where S is a simple perfect syntopogenous structure

and so associated with a classical topology, the above theorem gives

the well-known result that a topological space is connected iff every

continuous real-valued function has the Darboux property, where we

use S' = 3C'P the simple perfect structure associated with the usual

topology for the reals. If S is a symmetric perfect (symmetric simple)

syntopogenous structure and so associated with a uniformity (prox-

imity) for E, then the above theorem gives the result of Mrówka

and Pervin that a uniform (proximity) space is 11-connected (5-

connected) iff the range of every real-valued uniformly continuous

(equicontinuous) mapping of E is dense in an interval, where we use

S' = 3C (S' = 3C') the symmetric perfect (symmetric simple) syntopog-

enous structure associated with the usual uniformity (proximity) for

the reals.

From the remarks at the beginning of this section, we see that

every connected topological space is 11-connected and S-connected

with respect to every uniformity 11 and proximity 5 which generates

that topology. Let [£, 9] be a Tychonoff space (i.e., completely regu-

lar and Ti) and let 8ß be the proximity on E which is associated with

the Stone-Cech compactification ßE of E; i.e., A8ßB iff Cß(A)f^Cß(B)

7^0 where c$ denotes the closure operator in ßE. If / is a continuous
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map of [E, g] into a discrete space, then/has a continuous extension

/* on ßE which must be equicontinuous since ßE is compact. Hence

the restriction /* | E =f must be equicontinuous with respect to 5ß.

Thus a Tychonoff space is connected iff it is S^-connected.

Finally, in regard to Theorem 1.7, it should be noted that the

product space [E, S] of syntopogenous spaces [E\ Sx] may not be

simple or perfect even if each Sx has the property. The usual products

of quasi-uniform and proximity spaces are obtained in a canonical

waybyCsászár [l,pp. 122-126] by considering Sb and S', respectively.

Theorem 2.4. The product of ^-connected (b-connected) spaces is

^-connected (h-connected).

Proof. For 5-connectedness, the result follows from the fact that

S- and S'-connectedness are equivalent. Now suppose each space

[Ex, tlx] (X£A) is ^-connected. The sets considered in the proof of

Theorem 1.7 are dense in E not only with respect to S = XxeaSx

(where Sx is the biperfect syntopology associated with CUX) but also

with respect to S\ This follows from the formula S6iî,= (XxeASx,i')"'

= (XxsaSx),p (see (11.26) and (11.25) of [l,pp. 121, 120]) since a set

is dense with respect to S iff it is dense with respect to Stp. Further-

more, the isomorphism of [Eß, Sß] onto [Eß, S\Eß] yields an isomor-

phism of [£*, S"j onto [Eß, (s\Eß)b] since S» = #». By (9.11) of [l,

p. 94], (s| Eß)b = Sb\ Eß so the sets considered in the proof of Theorem

1.7 are also S6-connected.
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