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1. Introduction. Suppose t—*U(t) is a continuous one-parameter

group of unitary operators on a complex Hubert space K, and let H

be the self-adjoint generator of this group. Do there exist real or com-

plex linear closed subspaces of K which are invariant under the semi-

group [U(t)|¿2:0] but which are not invariant under the full group?

In §2 we investigate this question under the additional hypothesis

that H be a positive-definite operator. Our basic result, when H^cl

>0, is that there are no proper one-sided invariant manifolds; the

invariant subspaces (real or complex linear) for [l7(i)| — oo </< » ]

are precisely those for [U(t)\t0<t< =o ], t0 being an arbitrary real

number. This fact is exploited in §3 to obtain some sharp results on

domains of uniqueness for normalizable (finite-energy) solutions of

the Klein-Gordon and related hyperbolic partial differential equa-

tions. The general result is that such solutions are uniquely deter-

mined by their values on an open time-like backward cone in space-

time. This result carries over to the quantized Klein-Gordon field

(see Segal [5]), and it follows that the collection of field operators

R(f), with / a testing function supported on an open time-like back-

ward cone, is complete, i.e. bounded functions of these operators

are weakly dense in the space of all bounded operators on the field

state space.

Lax, Morawetz and Phillips [3] have recently considered scattering

for the wave equation, which is the limiting case of the Klein-Gordon

equation when the mass m—>0. An interesting result (cf. our Theorem

3.1) of their investigation is that a finite-energy solution of the wave

equation which vanishes in both the forward and backward light

cones is zero identically.

The author would like to thank Professor I. E. Segal for many clar-

ifying remarks and Dr. Walter Strauss for pointing out that Theorem

4.2 follows from Theorem 3.1.
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2. Groups with positive generators. Suppose /—>£/(/) is a one-

parameter unitary group on a complex Hubert space K. By Stone's

theorem [4] there exists a self-adjoint operator H on K with spectral

family [Ex] such that U(t)=expiHt.

Theorem 2.1. If H is a strictly positive operator, then any closed

real-linear manifold M in K which is invariant under [í7(Z)|z^Zo] is

also invariant under [ £/(/) | / </0].

Proof. As a preliminary remark, we observe that if (u, v) is the

complex inner product on K, then K becomes a real Hubert space

K, under the inner product [u, v] = Re(u, v) = [(u, v) + (v, u)]/2. We

shall use the symbol -L to denote orthogonality in Kr.

If u, v are in K, then by virtue of the positivity of H,

/•  00

e*'d(Exu, v),
m

with m a fixed positive number. This representation makes it evident

that/(/) = ( U(t)u, v) can be extended to a holomorphic function in the

half-plane [/+i5|5>0]. Furthermore, |/(/+w)| ge""™||7<|| -||p||.

Suppose now that u belongs to M, and v belongs to M1. By hypoth-

esis U(t)u also belongs to M, if /^/0, hence Re/(/) =0, t^t0. To com-

plete the proof of Theorem 2.1 it suffices to show that such an /

must be identically zero. For, if/=0, then vIm implies vl.U(t)u for

all /. M is a closed subspace of Kr, so that for any /,

U(t)M C (Mx)x = M. Q.E.D.

It remains to prove the

Lemma. Let f be analytic for Im z>0, continuous for Im z 5:0. Sup-

pose further that \f(x+iy)\ ^Ce~m" for some m>0 and all x. Then

Re/(x) = 0for all x>t0 implies thatf=0.

Proof. Under the hypotheses we may apply the Schwartz reflec-

tion principle to continue / analytically as a bounded function in

Rez>/o by defining f(x — iy) = —f(x+iy)*. It follows that f(to+iy)
= 0(e~mM). By a Phragmen-Lindelöf theorem [8, §5.8],/(z) = 0 iden-

tically in the half-plane, Re z^/0, hence also in the upper half-plane.

3. Klein-Gordon equation and domains of uniqueness. An im-

portant physical system in relativistic quantum mechanics is the

quantized scalar meson field [6], whose state space of inputs and

outputs (the asymptotic free field) is built up from normalizable

solutions of the Klein-Gordon equation
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ü<t> = m2<t>,

where m>0 and Q is the wave operator A — d2/dt2. The Hubert

space Km of real normalizable solutions of this equation may be de-

scribed most succinctly via Fourier analysis as follows (see [5]):

Identifying x0 with t, we let x = (x0, *i, • • • , xn) denote a vector in

Rn+1 and k = (k0, k\, • • • , kn) a vector in the dual space, with k-x

= koX0 — ̂ 1X1— • • - —knxn. Consider the complex-valued functions

on the hyperboloid k-k = m2 which are measurable and square-sum-

mable with respect to the Lorentz-invariant measure dx(k) = | ko\~ldnk,

dnk denoting »-dimensional Lebesgue measure dkxdk2 • ■ ■ dk„. To

such a function / corresponds a (generalized) solution </> given by

(3.1) *(*)= f e»-*f(k)dx(k).

So that <j> be real-valued, we require that /( — k) =f(k)* ; Km is then the

real Hubert space of all such Hermitian-symmetric, square-summable

/, with inner product

\f,g] = J f(k)g(-k)dx(k),

which is always real.

The invariance of the wave operator Q under the inhomogeneous

Lorentz group yields an orthogonal representation of this group on

Km; in particular, time translations, x—*x+teo, eo a unit vector on the

Xo-axis, give rise to a one-parameter orthogonal group

U(t):f(k)-*ea«f(k),      fEKm.

A distinguished property of this representation, for m>0, is that

a complex structure may be put on Km such that the representation

of the Lorentz group becomes unitary, and U(t)=eiiB with self-

adjoint generator if ^w. (See Segal [6].)

Explicitly, let j be the orthogonal transformation on Km sending

f(k)—*isgn(ko)f(k); then j2=—I, and j commutes with U(t). By

defining a complex inner product

(/, g) = [f,g}~ i[jf, g]

and multiplication by complex scalars

(a + iß)f = a/ + ßjf,

we make Km into a complex Hubert space. The operator H is given
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by multiplication by | k0 \, and since k ■ k = m2, it follows that the

spectrum of H= range \k0\ = [m, <*>).

Theorem 3.1. If <p is a real-valued normalizable solution of [Z]d>

= m2<p, vanishing on an open time-like cone, then d> = 0 identically.

Proof. By a time-like cone is meant a cone in Rn+1 containing a

time-like vector x (x\>x\+ • ■ ■ +x%). Since Km is invariant under a

change of coordinates in Rn+l given by a Lorentz transformation, it

is enough to consider the case <b = 0 on an open cone C containing the

negative x0-axis. If <b corresponds to/via (3.1), then the hypothesis

is equivalent to [/, P^] = 0 for every real-valued function^ E C0°° (Rn+1)

with compact support in C. P1!7 here denotes the projection of ^f onto

Km, i.e. the restriction of the Fourier transform of ^ (in Rn+1) to the

hyperboloid k2 = m2.

Let now M= [P^\^EC0"(Rn+1), Supp (V)EC]-, the bar signify-

ing closure in Km. By continuity [f, g] = 0 for all gEM; furthermore,

M is invariant under [U(t)\ Z^O], since U(t)P^ = P^t, with *<(x)

= ty(x+te0). Thus M is a one-sided invariant manifold and by Theo-

rem 2.1 we conclude that U(t)MEM for all /. For any tGC0"(i?"+1),

however, there exists a />0 such that Supp (^t)EC. Hence PS?

= U(-t)P'îrtEM, and so [/, P^] =0 for all test functions SF, imply-

ing that/=0.

It follows from the proof that we have

Corollary 3.1. If M is the set of all C°° functions on space-time with

compact support contained in a fixed open time-like cone, then the pro-

jection of M onto Km is dense in Km.

Remarks. Theorem 3.1 is a sharp result in two directions. In the

m = 0 case, where the energy operator is not strictly positive, there

exist nonzero normalizable solutions to the wave equation,

D<i» = o,

which vanish in the backward light cone. Furthermore, nonzero C°°

solutions of the Klein-Gordon equation exist which vanish in the

backward cone by virtue of familiar general principles concerning

hyperbolic equations. (See Courant-Hilbert [l, pp. 450-459] for a

discussion of this characteristic Cauchy problem.) Thus we see that

the physically-motivated requirements of normalizability and positiv-

ity of the energy force a solution to be determined everywhere by its

values on any open time-like cone.

4. Klein-Gordon equation with perturbations. Our preceding re-

sult on domains of uniqueness for normalizable solutions of the KG
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(Klein-Gordon) equation is also valid for a class of linear time-inde-

pendent perturbations, and nonlinear time-dependent perturbations

of the equation. In the first case, where the perturbation consists of

a non-negative potential V(x), an abstraction of the proof used for

the KG equation establishes the result. In the second case, where the

perturbation is, e.g., a continuous time-dependent operator small at

í= ± °°, results of Walter Strauss [7] on nonlinear scattering allow

the result for the KG equation to be used, but with the weaker con-

clusion that only the full backward light cone is a domain of unique-

ness for normalizable solutions of the nonlinear equation.

Let us consider first the KG equation with potential, viz.,

(4.1) D<*> = (m2 + V)4>,

where V is an a.e. non-negative measurable function of the space

variable x, and m2>0. To avoid irrelevant complications, we shall

assume that any singularities of V are mild enough so that the oper-

ator Ao= — A+m2+ V, with D(A0) =§ (the Schwartz space of rapidly

decreasing functions) is essentially self-adjoint on K, the real Hilbert

space of real-valued Lebesgue square-summable functions on Rn (see

Kato [2]). We denote the closure of A0 by A; A is then self-adjoint

and is easily seen to satisfy A ^m2I. By the spectral theorem B — Alli

exists as a positive self-ad joint operator.

To obtain a Hilbert space structure on solutions of (4.1), we intro-

duce the real Hilbert space X0 = D(A) ®D(B), with the inner product

(u, v)^  = (Aui, Avi)R + (Bu2, Bv2)K

when

u = I     )    and    v = I     ).
\u2/ \v2/

Writing (4.1) in the abstract form

(4.2) d2<p/dt2 = - A<p,

we define the space 3C of normalizable solutions of (4.2) as the set of

all A%valued functions of t satisfying (i) t^*p(t) is strongly differenti-

able and the derivative <p'(t) is absolutely continuous and a.e. strongly

differentiable, (ii) <p(0)ED(A) and <b'(0)ED(B), (iii) <¡> satisfies (4.2)
a.e.

Lemma 4.1. Every element of 3C has the unique representation
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/c6(/)\       /   cos/5       £-1sin/.B\/<M:0)\

V(Z)/       \--Bsin/7i       cos tB   )\<j>'(0))'

(See Strauss [7].)

From Lemma 4.1 we see that each element <b of 3C with Cauchy

data c6(0) =<bo, <p'(0)=<pi at time / = 0 corresponds uniquely to the

element

0
of 3Co- If the matrix operator in (4.3) is denoted by Ut, then t—>Ut is

a continuous one-parameter orthogonal group on 3C0 that maps the

Cauchy data of <b at / = 0 into the Cauchy data of <j> at time /.

Theorem 4.1. If <b is a normalizable solution of (4.2) and Q is an

open cone in Rn+l with vertex on the t-axis and containing a semi-

infinite segment of the t-axis, then <b = 0 on Q implies <j> = 0.

Proof. By hypothesis

(4.4) (d>, u) =  I       <p(x, t)u(x, t)dxdt = 0

lor all uECc(e), and the conclusion of the theorem follows if we

show that (4.4) must then hold for all m£C"(P"+1). For this purpose

we need the following construction:

Let J be the operator on 3C which acts formally as the Hilbert

transform with respect to time, i.e.

/(cos iBtbo + B-1 sin tBfa) = - sin tB<po + B~l cos tBfa.

Equivalently, in terms of its action on the space 3C0 of Cauchy data

at / = 0, / corresponds to the matrix operator

'-c: r>
Lemma 4.2. (a) j is an isometric transformation on 3C0 satisfying

j*=-j,j2=-I-

(b) jUt=UJ.

Proof. Direct calculation.

By Lemma 4.2, just as in the case of the KG equation in §3, we

can define a complex structure on 3Co via j, and /—» Ut becomes a one-

parameter unitary group on the complex Hilbert space 3CC. The self-

adjoint generator H of Ut is obtained as
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(B     0\
lim (jt)-\Ut - I) = ( ,

with D(H) = D(Bi)®D(B2). Since H commutes with j, and B^ml

on K, it follows that H^ml on 3CC.

We now return to the proof of Theorem 4.1. From Theorem 2.1

and the construction above, it follows that the real-linear span in 3C0

of the Cauchy data of 0 at times t belonging to any semi-infinite inter-

val coincides with the span of the Cauchy data of <j> at all times

— co <i< + oo. Since <p—>(4>, u) (defined in Equation (4.4)) is a con-

tinuous linear functional on 3Co, we conclude, as in the proof of Theo-

rem 3.1, that (<¡>, u) = 0 for all uECq(<5Í), — &> <t<<x>, where Qt is

the translated cone te0+ 6. Any compact set in Rn+1 is contained in

some Qt, however, so <j> = 0.

Nonlinear perturbations. The case of the equation

(4.5) (□ - m2)u = L(u)

with L a possibly nonlinear and time-dependent operator can be suc-

cessfully treated whenever scattering theory exists for (4.5), con-

sidered as a perturbation of the free KG equation

(D - m2)u = 0.

(Strauss [7] has discussed the nonlinear scattering problem, and has

obtained some sufficient conditions on L for existence of the wave

operators.) Recall that the wave operators W± are constructed as

follows: If u(t) is a normalizable solution of (4.5), consider the func-

tion u„ obtained as the solution to the KG equation with Cauchy

data u(s), u'(s) at time t = s. Then W±u = \im,„±m us, assuming that

this strong limit in the Hilbert space of normalizable KG solutions

exists.

Theorem 4.2. If W- exists and is 1-1, and u is a normalizable solu-

tion of (4.5) vanishing on the solid backward light cone, then u = 0.

If W+ exists and is 1-1, and u is a normalizable solution of (4.5)

vanishing on the solid forward light cone, then w = 0.

This theorem is an immediate consequence of our earlier results and

the following

Lemma. If u = 0 on the backward (forward) light cone, then so does

W-U (W+u).

Proof. Let Q denote the solid backward light cone, C, the cone

translated through time s, and D, = eC\ — e,. With u, defined as

above, the vanishing of u on e and the hyperbolic propagation prop-



660 R. W. GOODMAN

erty of the KG equation imply that u, = 0 on D, lor all 5<0. Hence

W-.U vanishes on 6 = U,<0 D,.

(The same proof works for W+u, of course.)

5. Causal algebras of field operators. Consider the quantized free

scalar meson field of mass m>0. (See [5].) Mathematically, we have

a map /—*P(/) from C"(P4) to self-adjoint operators on a complex

Hilbert space K satisfying the usual physical desiderata (commuta-

tion rules, Lorentz-transformation properties, irreducibility) and cer-

tain continuity requirements. Let W(f)=exp[iR(f)], and denote by

Pf the projection of/£C~(P4) onto the KG Hilbert space, i.e. the

restriction of the Fourier transform of / to the mass hyperboloid

k2 = m2. By hypothesis, the set of operators [W(/)] is irreducible on

K, and the map /—»W(/) is continuous with respect to the Lorentz-

invariant Hilbert topology on Pf and the weak operator topology on

W(f).

Theorem 5.1. If R(-) is the quantized field for the KG equation of

mass m>0, then the operators R(g), with Supp (g) contained in a fixed

open time-like cone, generate all bounded operators on the field state

space K.

Proof. From Corollary 3.1, the set of all such g is strongly dense

in the KG Hilbert space Km. Hence by the continuity of the map

f—*W(f), it follows that the ring of operators generated by W(g),

g ranging over a dense subset of Km, is B(K).
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