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In his study [2] of locally isometric mappings of a G-space R on

a G-space R, Busemann considers the following question: Under what

conditions is every locally isometric mapping of a G-space R on itself

a motion? He proves that such is the case if either (i) the fundamental

group of R is not isomorphic to a proper subgroup of itself, or (ii) R

is compact. Busemann suggests [2, p. 405] that conditions (other

than (i)) be sought which apply to noncompact spaces, in particular,

conditions which apply to an ordinary cylinder. Szenthe replies to

this in a recent paper [3 ] in which he finds conditions in terms of cer-

tain bounds on the lengths of nonoverlapping geodesic curves which

begin and end at the same point. In [l] Busemann shows that under

appropriate hypotheses on the order of magnitude of volumes of

spheres a locally isometric mapping of a noncompact G-space on it-

self is a motion. Our paper provides another condition. We first

show that if a locally isometric mapping of R on itself has a fixed

point, then it is a motion. From this it readily follows that if the mo-

tions of R form a transitive group, then every locally isometric map-

ping of R on itself is a motion.

Let 4> denote a locally isometric mapping of a G-space R on a G-

space R. The terminology we use and the following properties of <p are

found in Busemann [2, §27].

(1) // x(t), a^r^ß, is a curve in R and if <p(x(r)) =x(t) represents

a segment, then x(t) represents a segment and x(a)x(ß)=x(a)x(ß).

(2) For a given curve x(t), a^r^ß, in R and a given point ä of R

such that 4>(a)=x(a) there is exactly one curve x(t) in R such that

<p(x(r)) =x(t) with x(a) =ä.

(3) There is a number p(p) >0 such that if 4>(pi) =<p(p2) —p, fi^pi,

thenpip2>2p(p).

(4) The number of points of R which lie over a given point of R is

countable and is the same for different points of R.

(5) If <b is 1-1 then <p is an isometry.

Since each two points of a G-space are joined by a metric segment of

the space, the following is an immediate consequence of (1) and (2).
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(6) If a and b are any two points of R and if ä is any point of R

which lies over a, then there is a point b of R which lies over b, and äh = ab.

It follows from the definition that

(7) If (p is a locally isometric mapping of R on itself then (bn is also

(» = 1,2, • • •)■

Theorem 1. If 4> is a locally isometric mapping of a G-space R on

itself and if <p has a fixed point, then <b is a motion.

Proof. Suppose the contrary, and let p denote any fixed point of <f>.

By (5) <p is not 1-1 so by (4) there is a point pi^p such that <b(pi) =p.

By (6) there is a point p2 such that <b(p2) —pi and pp2 = ppi. We define

inductively a sequence \pn) of points of R such that<p(pn+i) =p„ and

PPn = PPu n = l, 2, ■ ■ ■ .
If n<m then <pn(pn) —p while (pn(pm) =pm-n. Since ppm-n = ppu we

see that pm-^p. Therefore 4>n(pn)^cbn(pm) and pn^pm- This shows

that the elements of \pn) are pairwise distinct. By (7) <pn, for each

positive integer «, is a locally isometric mapping of R on itself, so

by (3) pipj^2p(p) if iîïj. This contradicts the finite compactness of

R.

Theorem 2. A locally isometric mapping <b of a G-space R on itself

is a motion if and only if there is a motion xf/ of R such that for some point

pER,i(<p(p))=p.

Proof. The necessity is trivial. The sufficiency is established by

observing that rp<b is a locally isometric mapping of R on itself with

fixed point p. By Theorem 1, \p<p is a motion and hence 1-1. Therefore,

0 is 1-1 and by (5) a motion of R.
The motions of a G-space form a transitive group if, given any two

points of the space, there is a motion of the space which maps one

into the other. Thus the following theorem is a corollary to Theorem 2.

Theorem 3. // a G-space R has a transitive group of motions, then

every locally isometric mapping of R on itself is a motion.

Apparently little is known about the problem of determining the

G-spaces with transitive groups of motion in general, but the 2-

dimensional case has been completely solved. Busemann has shown

[2, p. 371] that the only G-surfaces (2-dimensional G-spaces) with

transitive groups of motions are: The plane with a Minkowskian or

quasi-hyperbolic metric, the cylinder and torus with a Minkowskian

metric, the sphere and projective plane with a spherical metric.

The author is grateful to the referee for bringing reference [l ] to

his attention.
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A -GENUS AND INDECOMPOSABILITY OF
DIFFERENTIABLE MANIFOLDS

YASURÔ TOMONAGA

Introduction. In the previous paper [l] we have studied the con-

ditions on which a differentiable manifold be indecomposable and

cited many examples of indecomposable manifolds. In this paper

we shall study the relations between A -genus and indecomposability

of a differentiable manifold.

1. Hereafter we denote by Xn an «-dimensional compact orientable

differentiable manifold. If Xn = Xr-X, we say that X„ is decomposable

and if not, we say that Xn is indecomposable. If Xin = Xn-Xe we have

(1.1) A(Xin) = A(Xr)A(X,);

where A (X) denotes the A -genus of X and we define as follows :

(1.2) A(Xn) = 0,       » ^ 0 mod 4.

If r and í are divisible by 4, the relation (1.1) follows from the gen-

eral property of multiplicative series [2, p. 75]. According to the co-

bordism theory, thecobordism components of Xr (r^O mod 4) consist

only of torsions. Hence the product Xr-X, also consists only of tor-

sions. Therefore A (Xr-Xe) is zero. Thus (1.1) holds in general. Mean-

while Atiyah and Hirzebruch have proved the following:

Theorem 1 (Atiyah and Hirzebruch [3]). If Xin is differentiably

imbedded in the (8n — 2q)-sphere, then A(Xin) is divisible by 2a+1. If

moreover q = 2 mod 4, then A (Xin) is divisible by 2 "+2.

It is well known that an Xn is always differentiably imbedded in

the 2w-sphere. Hence we have from the above theorem
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