Successive integrations by parts and application of the conditions $f^m(1) = 0$ gives I(x) = f(x).

The second solution can be verified in a similar way.

REFERENCES

- 1. R. G. Buschman, An inversion integral for a Legendre transformation, Amer. Math. Monthly 69 (1962), 288-289.
 - 2. ——, An inversion integral, Proc. Amer. Math. Soc. 13 (1962), 675-677.
- 3. A. Erdélyi et al., Tables of integral transforms, Vol. 1, McGraw-Hill, New York, 1954.
 - 4. ——, Higher transcendental functions, Vol. 2, McGraw-Hill, New York, 1954.
- 5. Ta Li, A new class of integral transforms, Proc. Amer. Math. Soc. 11 (1960), 290-298.
- 6. E. T. Titchmarch, Introduction to the theory of Fourier integrals, 2nd ed., Oxford Univ. Press, Oxford, 1959.
 - M. A. College of Technology, Bhopal (M.P.) India

INFINITE ORDER DIFFERENTIAL EQUATIONS

D. G. DICKSON

1. Introduction. Let $f(z) = \sum_{k=0}^{\infty} A_k z^k$ converge for |z| < R, where $0 < R \le \infty$; let E be the vector space of entire functions of exponential type less than R; and let $\mathfrak{D} = \sum_{k=0}^{\infty} A_k D^k$, where D is the differential operator. The purpose of this paper is to provide a brief derivation of the results of Muggli [2, p. 154] regarding the general solutions in E of the equations

$$\mathfrak{D}\phi = 0, \text{ and}$$

$$\mathfrak{D}\phi=\psi.$$

It will be shown that $\mathfrak D$ is a surjective endomorphism of E, reducing the problem of solving (2) to that of solving (1). It is easy to show that if ζ is a zero of f of order at least h+1 and of modulus less that R, then $z^h e^{\xi z}$ is a solution of (1). If B is the set of all such exponential monomials, then Muggli's result says that B is a basis for the solutions of (1) and that each solution ϕ is representable as a sum of exponential monomials with exponent coefficients in the conjugate indicator diagram of ϕ . Each solution of (2) is then representable as the sum of a contour integral and a solution of (1).

Results similar to these have been obtained by Sheffer [3, p. 255]

Received by the editors March 14, 1963.

and Sikkema [4, p. 203]. In case f itself is entire and of exponential type, the solutions of (1) are entire mean periodic functions and have been studied widely. The result concerning (1) may be viewed as a generalization of the fact that any function of exponential type σ and of period 2π can be expressed in the form $\sum c_n e^{inz}$, where the sum is over integers n with $|n| \leq \sigma$. The explicitness of the result given here and its brief derivation are due to the use of a lemma which is perhaps of interest in itself.

2. **Preliminaries.** Let C denote the disk |z| < R, and let P' denote the complement in the plane of the set P. For ϕ in E, $P(\phi)$ will denote the conjugate indicator diagram of ϕ , and $L\phi$ will denote the Borel transform [1, p. 73] of ϕ . Then $P(\phi) \subset C$, and $L\phi$ is analytic in $P'(\phi)$. Also if $t \in C$, then $\mathfrak{D}_z e^{zt} = f(t)e^{zt}$, where $\mathfrak{D}_z = \sum_{k=0}^{\infty} A_k \partial^k / \partial z^k$.

The fact that $\mathfrak D$ maps E into E with $P(\mathfrak D\phi) \subset P(\phi)$ follows easily from the Pólya representation of ϕ [1, p. 74]. For if γ is a simple closed (rectifiable and positively oriented) curve in C containing $P(\phi)$ in its interior, then

$$\mathfrak{D}\phi(z) = (2\pi i)^{-1} \int_{\gamma} e^{zw} f(w) L\phi(w) dw,$$

the change in order of integration and summation being justified by the uniform convergence of this integrand on γ . D ϕ is obviously entire, and since γ may be chosen to be arbitrarily close to the boundary of $P(\phi)$, it easily follows that the indicator function of D ϕ is less than or equal to that of ϕ and so $P(\mathfrak{D}\phi) \subset P(\phi)$.

 $\mathfrak D$ also maps E onto E; in fact if $\psi \in E$, then there is a ψ_0 in E such that $\mathfrak D\psi_0 = \psi$ and $P(\psi_0) = P(\psi)$. For suppose that γ is a simple closed curve in C about $P(\psi)$ such that there are no zeros of f on γ or in the region common to the interior of γ and $P'(\psi)$. Let

(3)
$$\psi_0(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{e^{xw} L\psi(w)}{f(w)} dw.$$

Then $\psi_0 \in E$ and since ψ_0 is independent of the choice of γ for γ in the zero free region mentioned, $P(\psi_0) \subset P(\psi)$. But easily $\mathfrak{D}\psi_0 = \psi$, and since $P(\psi) = P(\mathfrak{D}\psi_0) \subset P(\psi_0)$, $P(\psi_0) = P(\psi)$.

3. Representation of solutions. Definition. If $\phi \in E$ and $t \in C$, then

$$T\phi(t) = \left[\mathfrak{D}_z \int_0^z \phi(s) e^{(z-s)t} ds \right]_{z=0}.$$

 $T\phi$ is well defined; for if $t \in C$, then $e^{zt} \in E$ and its convolution with ϕ has as a type the maximum of |t| and the type of ϕ . Hence the convolution and its image under \mathfrak{D}_z are in E. Further, $T\phi$ is analytic in C. For suppose N is a closed circular neighborhood in C and $t \in N$. Then the convolution of ϕ and e^{zt} is of a type $\sigma < R$, and its Borel transform is $(z-t)^{-1}L\phi(z)$. By choosing a circle β about the origin with radius between σ and R and which contains N in its interior, we may write the convolution as a Pólya integral over β and obtain

(4)
$$T\phi(t) = \int_{\beta} H(w, t) dw, \text{ where } H(w, t) = \frac{f(w)L\phi(w)}{2\pi i(w - t)}.$$

Application of Morera's theorem yields the analyticity of $T\phi$ in the interior of N.

LEMMA. If
$$\phi \in E$$
 and $t \in C \cap P'(\phi)$, then $T\phi(t) = f(t)L\phi(t) - L\mathfrak{D}\phi(t)$.

PROOF. Let ϕ be of type $\sigma < R$ and $\epsilon = (R-\sigma)/3$. Let α , β , and γ be the circles $|z| = \sigma + \epsilon$, $|z| = \sigma + 2\epsilon$, and $|z - (\sigma + R)/2| = \epsilon/3$, respectively. The left member of the identity to be established is analytic in C, while the right member is analytic in $C \cap P'(\phi)$ since $P(\mathfrak{D}\phi) \subset P(\phi)$. Since both are uniform, it suffices to establish the identity for t inside γ . Considering only such t, write $\phi(t)$ as a Pólya integral over α , and then operate on this with $\mathfrak D$ and then with L, writing the latter as a Laplace transform from 0 to ∞ . Then with H(w, t) as in (4), $L\mathfrak D\phi(t) = -\int_{\alpha} H(w, t) dw$, the change in order of integration being justified by the observation that $\int_0^\infty \exp\left[(w-t)s\right] ds$ converges absolutely since $\mathfrak R(t-w) > 0$ for w on α . Write $\int_{\alpha} H(w, t) dw$ as the difference of integrals over β and γ . As in (4), the integral over β is $T\phi(t)$ while the integral over γ is $f(t)L\phi(t)$.

DEFINITION. Let $\{\zeta_k\}_{k\in K}$ be the zeros of f in C with m_{k+1} the order of ζ_k . Let c_k be a circle in C about ζ_k containing no other zeros in or on itself. For each $k\in K$ and natural h, define the linear functional \mathfrak{D}_{kh} on E by

$$\mathfrak{D}_{kh}\phi = \frac{1}{2\pi i} \int_{c_k} \frac{(t - \zeta_k)^h T\phi(t)}{f(t)} dt.$$

Using the lemma, it is easy to show that $\mathfrak{D}_{kh}(z^p \exp \zeta_q z) = h! \delta_{ph} \delta_{qk}$ when ζ_q is a zero of f of order at most p+1 and hence the elements in B are linearly independent.

THEOREM. Let $\phi \in E$; then $\mathfrak{D}\phi = 0$ if and only if

(5)
$$\phi(z) = \sum_{k} e^{\xi_k z} \sum_{h=0}^{m_k} \frac{\mathfrak{D}_{kh} \phi}{h!} z^h,$$

where k ranges over those k for which $\zeta_k \in P(\phi)$.

PROOF. The fact that such a sum satisfies the equation is obvious. Suppose that $\mathfrak{D}\phi=0$. Upon writing the sum in (5) with the coefficients in integral form, the m_k may be replaced by infinity since the terms so introduced are zero by Cauchy's theorem, and then the sum over h may be replaced by an exponential function. The sum of the integrals over the c_k may be replaced by one integral over a closed path γ in C about $P(\phi)$ whose interior contains no zeros of f other than those in $P(\phi)$. Using the lemma and the fact that $\mathfrak{D}\phi=0$, the resulting integral is the Pólya representation of ϕ .

COROLLARY. Let ϕ and $\psi \in E$; then $\mathfrak{D} \phi = \psi$ if and only if

$$\phi(z) = \psi_0(z) + \sum_k e^{\zeta_k z} \sum_{h=0}^{m_k} \frac{\mathfrak{D}_{kh}(\phi - \psi_0)}{h!} z^h,$$

where k ranges over those k for which $\zeta_k \in P(\phi - \psi_0)$ and ψ_0 is given by (3).

Other interesting results follow from the theorem and its corollary by observing their implications when $P(\phi)$ or $P(\phi-\psi_0)$ contains one or no zeros of f, as is the case when one of the diagrams is a point. It follows from the theorem that any solution of (1) in E is actually the solution of a similar equation of finite order having a characteristic function dividing f in the ring of functions analytic in C.

REFERENCES

- 1. R. P. Boas, Entire functions, Academic Press, New York, 1954.
- 2. H. Muggli, Differentialgleichungen unendlich hoher Ordnung mit konstanten Koeffizienten, Comment. Math. Helv. 11 (1938), 151-179.
- 3. I. M. Sheffer, Systems of linear differential equations of infinite order, with constant coefficients, Ann. of Math. (2) 30 (1928), 250-264.
- 4. P. C. Sikkema, Differential operators and differential equations of infinite order with constant coefficients, Noordhoff, Groningen, 1953.

University of Michigan