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Successive integrations by parts and application of the conditions

fm(l)=0 gives I(x) =f(x).
The second solution can be verified in a similar way.
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INFINITE ORDER DIFFERENTIAL EQUATIONS

D. G. DICKSON

1. Introduction. Let /(z) = ]C™-o AkZk converge for \z\ <R, where

0 <R ^ oo ; let E he the vector space of entire functions of exponential

type less than R; and let 2D = XX o AkDk, where D is the differential

operator. The purpose of this paper is to provide a brief derivation

of the results of Muggli [2, p. 154] regarding the general solutions in

E of the equations

(1) 2D<¿> = 0,    and

(2) Sid, = $.

It will be shown that 2D is a surjective endomorphism of E, reduc-

ing the problem of solving (2) to that of solving (1). It is easy to

show that if f is a zero of / of order at least h+l and of modulus less

that R, then zheiz is a solution of (1). If B is the set of all such exponen-

tial monomials, then Muggli's result says that B is a basis for the

solutions of (1) and that each solution cb is representable as a sum of

exponential monomials with exponent coefficients in the conjugate

indicator diagram of <b. Each solution of (2) is then representable as

the sum of a contour integral and a solution of (1).

Results similar to these have been obtained by Sheffer [3, p. 255]
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and Sikkema [4, p. 203]. In case/ itself is entire and of exponential

type, the solutions of (1) are entire mean periodic functions and have

been studied widely. The result concerning (1) may be viewed as a

generalization of the fact that any function of exponential type ff and

of period 27r can be expressed in the form Yc*einz< where the sum is

over integers » with | w| ^<r. The explicitness of the result given here

and its brief derivation are due to the use of a lemma which is per-

haps of interest in itself.

2. Preliminaries. Let C denote the disk |z| <R, and let P' denote

the complement in the plane of the set P. For <j> in E, P(<p) will de-

note the conjugate indicator diagram of <p, and L<p will denote the

Borel transform [l, p. 73] of <p. Then P(<p) EC, and L<p is analytic in

P'(<t>). Also iltEC, then £>2e*<=/(/)«*', where 3l>,= £t% Akdk/dzk.

The fact that 3D maps E into E with P(£xj>) EP(<t>) follows easily

from the Pólya representation of <p [l, p. 74]. For if y is a simple

closed (rectifiable and positively oriented) curve in C containing P(<p)

in its interior, then

£>0(z) = (2«)-1 I  emf(w)L<p(w)dw,
J   y

the change in order of integration and summation being justified by

the uniform convergence of this integrand on y. £>cb is obviously en-

tire, and since y may be chosen to be arbitrarily close to the boundary

of P(<p), it easily follows that the indicator function of D<£ is less than

or equal to that of <p and so P(£xb) EP(4>)-

33 also maps E onto E; in fact if ypEE, then there is a ^0 in E such

that SD'/'o = \A and P(fto) =P(^). For suppose that 7 is a simple closed

curve in C about Pty) such that there are no zeros of / on 7 or in the

region common to the interior of 7 and P'(?p). Let

1    r    e™hp(w)
(3) ^o(z) = —- I — dw.

2m J y      f(w)

Then \poEE and since \}/o is independent of the choice of 7 for 7 in

the zero free region mentioned, P(\p0)EP(4')- But easily 3ûi/'o=^',

and since P(f)=P(®to)EP(4>o), P(W=P(f).

3. Representation of solutions.

Definition. If <j>EE and tEC, then

T<t>(t) = [a), f 4>(s)e^^ds\    .
L    J 0 Jj-o
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T<b is well defined; for if tEC, then eztEE and its convolution with

<p has as a type the maximum of | /| and the type of <6. Hence the con-

volution and its image under 2DZ are in E. Further, T<p is analytic in

C. For suppose A is a closed circular neighborhood in C and tEN.

Then the convolution of <b and ezt is of a type <r<R, and its Borel

transform is (z — t)~1L(b(z). By choosing a circle ß about the origin

with radius between <r and R and which contains N in its interior, we

may write the convolution as a Pólya integral over ß and obtain

/f(w)L<b(w)
H(w, t)dw,    where    H(w, t) =-— •

ß                                                          2iri(w — t)

Application of Morera's theorem yields the analyticity of T<p in the

interior of N.

Lemma. If <pEE and tECnP'(<p), then T<p(t)=f(t)L<b(t)-L£Hp(t).

Proof. Let <j> he of type a<R and e= (R — a)/3. Let a, ß, and y

he the circles \z\ =cr + e, \z\ =a + 2e, and \z—(a+R)/2\ =e/3, re-

spectively. The left member of the identity to be established is

analytic in C, while the right member is analytic in C(~\P'(<p) since

P(2Dci>) EP(4>)- Since both are uniform, it suffices to establish the

identity for / inside y. Considering only such /, write <p(t) as a Pólya

integral over a, and then operate on this with 2D and then with L,

writing the latter as a Laplace transform from 0 to ». Then with

H(w, t) as in (4), LSxb(t)=—faH(w, t)dw, the change in order of

integration being justified by the observation that /0™ exp[(w — t)s]ds

converges absolutely since (R(Z — w) >0 for w on a. Write faH(w, t)dw

as the difference of integrals over ß and y. As in (4), the integral

over ß is T<b(t) while the integral over y is f(t)Lcb(t).

Definition. Let {^jitex be the zeros of / in C with mk+i the order

of f*. Let ck he a circle in C about f* containing no other zeros in

or on itself. For each kEK and natural h, define the linear functional

£)*» on E by

h<t> = — I
2iriJCk /(/)

Using the lemma, it is easy to show that ©jfc>,(zp exp f3z) = h\5phStk

when f„ is a zero of/of order at most p + l and hence the elements in

B are linearly independent.

Theorem. Let <bEE; then £xb = 0 if and only if

(5) 4>(z) = E^E -T— zA>
k h=o     h\

(t - h)hT<p(t) J
£>kh<t> = — I    --.-dt.
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where k ranges over those k for which ¿j¿£P(</>).

Proof. The fact that such a sum satisfies the equation is obvious.

Suppose that 33$ = 0. Upon writing the sum in (5) with the coeffi-

cients in integral form, the mk may be replaced by infinity since the

terms so introduced are zero by Cauchy's theorem, and then the

sum over h may be replaced by an exponential function. The sum of

the integrals over the ck may be replaced by one integral over a closed

path 7 in C about P(<p) whose interior contains no zeros of / other

than those in P(4>). Using the lemma and the fact that 33$= 0, the

resulting integral is the Pólya representation of <j>.

Corollary. Let <p and 4>EE; then <£>4>=4> if and only if

<Kz) = ^o(z) + Y ¿kZ Y-**,
k a=o A!

where k ranges over those kfor which ^kEP(4>~4'o) andipo is given by (3).

Other interesting results follow from the theorem and its corollary

by observing their implications when P(<b) or P(<p—\j/o) contains one

or no zeros of/, as is the case when one of the diagrams is a point. It

follows from the theorem that any solution of (1) in E is actually the

solution of a similar equation of finite order having a characteristic

function dividing / in the ring of functions analytic in C.
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