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1. Introduction. There are two ways in which infinite matrices ap-

pear in summability theory. A sequence method of summation with the

matrix A = (ank) is based on the transformation

oo

(1) o-„ = Ans = ^Z ankSk,       n = 0, 1, • • -,

of the sequence 5= {sn} into the sequence As= {o-n} ; and a series

method with the matrix A' = (a^) corresponds to the transformation

oo

(2) t„ = X) a'nkUk,       n = 0, 1, • • -,
k-0

of the series ¿Zun, un = sn — sn_i, s_i = 0, into the sequence {t„¡. Con-

ditions for the regularity of the methods A, A' are well known [l,

pp. 64, 68], [2, pp. 389, 396].
If the summability field 21 of a sequence or series method A (i.e.,

the set of all sequences s, summable by A) is contained in the sum-

mability field 53 of another method B (i.e., if 21C93), we call B stronger

than A.

It is natural to call the matrix A' of (2) dual to the matrix A of

(1) (or A dual to A') if <r„ becomes r„ (or, respectively, r„ becomes

<rn) under the application of the formal summation by parts; this is

equivalent to the relation a'nt= ^Zî^kani (or to the relation ank

= a'nt— aré,i+i)- In many concrete cases, dual methods of summation are

equivalent, in the sense that they define the same summability fields

and the same limits. One can also give simple sufficient conditions

which guarantee this ([4, Theorems 8, 9], a misprint should be cor-

rected there: A is to be replaced by B). It is easy to give examples of

dual methods of summation of opposite types which are not equiva-

lent in this sense, but this does not exclude the possibility that one

of them is equivalent to some other method of the opposite type.

In this paper we show that sequence and series methods are essen-

tially different:

There exist regular sequence summation methods for which the sum-

mability field is not contained in the summability field of any regular
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series summation method. On the other hand there are regular series

methods for which the summability field is not contained in the sum-

mability Held of any regular sequence summation method.

Our problem proves to be related to (and more general than) the

problem discussed by Erdös and Piranian. In [3] they give a sequence

method for which there is no stronger row-finite method. Our exam-

ples are based upon matrices of types similar to theirs.

Let A = (ank) be an infinite matrix with real or complex entries.

For each » = 0, 1, • • • , Kn will denote the set of k, k = 0, 1, • • • , for

which ank9¿0. About the matrix A we shall always assume that:

(a) Each set Kn is infinite.

(ß)  For n^m, the sets Kn, Km have a finite intersection.

Sometimes we shall also assume:

(t)   Yt-o \aA < + <*> for each n.
(h) For each n, the union Ko^JKiKJ ■ ■ ■ VJKH contains only a

finite number of adjacent integers k, k + 1.

It is easy to find examples of regular methods which satisfy all con-

ditions (a)-(h). The matrix of Erdös and Piranian [3, p. 397] can serve

for the sequence methods; with sufficiently many first elements of

each row replaced by ones, one obtains from it an example for the

series methods.

2. The basic lemma. The following statement applies to matrices

A which satisfy (a), (ß) :

Lemma. Let B be a row-finite matrix such that each sequence s= {sk}

with the property As = 0 has a convergent B-transformation Bs. Then

there exists a finite set L and an integer m such that

(3) bnk = 0   unless   k E L\J Ko\J ■ ■ ■ W Km.

Proof. If the condition (3) is not satisfied, then for each L and

each m there is an integer / with lEL^Ko^J ■ • ■ \JKm such that

bni^O for a certain n.

Let Ln denote the set of all / with £„¡^0. By induction, we define

sequences of integers nT, lr, kr with the following properties:

m < «2 < • • • ; h E Lnr;

(4) /, C Pr = Lo W Li W • ■ • W Lnr_, U Ko W • ■ ■ W £_»;

bn,lr   7*0; krE Kr] h $ Ln, \J Pr.

At the rth step, we first take UEPr in such a way that bnir?±0 for a

certain n. We must have ra>wr_i, and we put nT = n. Then we select
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krEKr with the required properties; this is possible because of (a)

and 03).
We now define inductively the values of sk on the sets Lno, K0,

L„v Ki, • • • . At the rth step, when the values of sk for kELnJU • ■ •

WL^^UAoW ■ ■ ■ WAr_i are already known, we first extend sk onto

Lnr so as to have B„rs = ( — l)r, and then onto Kr so that Ars = 0; we

can assume that sk = 0 for all but finitely many k in Kr. We complete

the definition of sk arbitrarily outside of all sets L„r, Kr. We will have

As = 0, while Bnrs diverges, a contradiction to the assumption.

3. The main results. The first theorem is essentially due to Erdös

and Piranian [3].

Theorem 1. If A is a sequence method which satisfies (a), (ß), (y),

there does not exist a row-finite regular sequence method B which is

stronger than A.

Proof. Assume that B is a row-finite method with 33D2I. Let L, m

correspond to B according to the lemma. For an arbitrary bounded

sequence 5, there is another sequence s' (constructed below) which

coincides with 5 on P = LUA0U • • • WAm such that

(5"> Ans' = 0       for n > m.

Since 33D2Í, the sequence 5' and hence 5 is 5-summable. Thus B

cannot be regular.

To obtain 5', we select for each n>m, knEKn, i„fJLUZoU • • •

WA„_i. We put sk =0 for kEP, k^kn, n^m. It is then possible to

select the s¿, to satisfy (5).

Theorem 2. If a series method A' satisfies (a), (ß), there does not

exist a row-finite regular series method B' which is stronger than A'.

Proof. According to the lemma, we must have lim„^:xb¡a = 0 for

infinitely many k, and this contradicts the regularity of B'.

Theorem 3. If a sequence method A satisfies (a), (ß), (y), (b), then

there does not exist a regular series method A' which is stronger than A.

Proof. For each fixed n, the limit

(6) lim   53 a'nkUk = lim  < 23 (a'nk — a'n,k+i)sk + a'npsp >

must exist for all s£2I. It follows from the lemma that for some m

and some finite set L,
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anp = 0, p Ç£ P, ank — an,k+i = 0, k é£ P,

(7)
P = L\J Ko^J ■ ■ • VJ Km.

From (ô) we see that, for each fixed », only finitely many a'„t are

different from zero. An application of Theorem 1 completes the proof.

Remark. Condition (ô) cannot be omitted from the assumptions of

Theorem 3. In fact, one can find regular matrices A which satisfy (a),

(ß), and [4, (29) ] ; because of the last condition, each such A is weaker

than its dual A'.

Theorem 4. If a series method A ' satisfies (a), (ß), then there is no

sequence method A with SID21'.

Proof. Let n be fixed, then

P P      /     V \

(8) lim   Y ankSk =  lim   Y ( Y a»i W
J,-»»    *=0 2>->»    *=0 \ i-k /

must exist for all sequences u= [uk] for which the ^'-transform A'u

exists and is equal to zero. According to the lemma, there are m and

L such that for P = L\JKÜ\J ■ ■ ■ KJKm,

(9) ank + an,k+i + • • • + anP = 0       for k $ P, p ^ k.

There exists a k0EP, and then (9) implies ank<¡ = an¡kl¡+i= • • • =0.

Thus A is row-finite, and our statement follows from Theorem 2.
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