A COUNTEREXAMPLE TO A PROBLEM OF SZ.-NAGY¹

S. R. FOGUEL

The purpose of this note is to construct an operator, in a Hilbert space, with uniformly bounded powers, which is not similar to a contraction. (An operator P is a contraction if $||P|| \le 1$.) This will furnish a negative answer to a problem raised in [1].

Let H be a Hilbert space and T an operator such that $||T^n|| \le M$ $(n=1, 2, \cdots)$. Define

$$H_0(T) = \{x \mid \text{weak lim } T^n x = 0\}, \qquad H_1(T) = H_0(T^*)^{\perp}.$$

We proved in [2, Theorem 3.1] that if P is a contraction then $H_0(P) = H_0(P^*)$. Let $T = SPS^{-1}$ where $||P|| \le 1$, then:

$$H_0(T) = \{x \mid P^n S^{-1} x \xrightarrow{\omega} 0\} = \{x \mid S^{-1} x \in H_0(P)\} = S(H_0(P))$$

and

$$H_1(T) = H_0(T^*)^{\perp} = [S^{*-1}(H_0(P^*))]^{\perp} = \{x \mid S^{-1}x \perp H_0(P^*)\}$$

= $S(H_1(P))$.

But $H_1(P) \perp H_0(P)$ and thus $H_0(T) \cap H_1(T) = 0$.

We will construct an operator, with uniformly bounded iterates, for which $H_0 \cap H_1 \neq 0$, and thus the operator is not similar to a contraction.

Let $H = K \oplus L$, where K is generated by the orthonormal sequence $\{e_i\}$ and L by the orthonormal sequence $\{f_i\}$. Let $\{n_k\}$ be a subsequence of the integers which is "sparse" in the sense that:

$$n_{k+1}-n_k>2n_k$$

(e.g., $n_k = 4^k$).

NOTATION. Integers in the sequence $\{n_k\}$ will be denoted by α, β, \cdots . Integers outside the sequence $\{n_k\}$ will be denoted by a, b, \cdots . The letters $i, j, k \cdots$ will stand for integers which might be in or out of the exceptional sequence $\{n_k\}$.

DEFINITION. Let the operator T be defined by the linear extension of

$$Te_1 = 0, \qquad Te_i = e_{i-1}, \qquad i \geq 2,$$

and

Received by the editors December 21, 1962 and, in revised form, May 2, 1963.

¹ The research in this document has been sponsored in part by the Air Force Office of Scientific Research, OAR, through the European Office Aerospace Research, United States Air Force.

$$Tf_a = f_{a+1}, \qquad Tf_\alpha = e_\alpha + f_{\alpha+1}.$$

LEMMA 1. For each j and h

$$T^{j}f_{h} = f_{h+j} + \epsilon(j, h)e_{i(j,h)}$$

where:

a. If no element of the sequence n_k is in [h, h+j] then $\epsilon(j, h) = 0$.

b. Let α be the largest element of $\{n_k\}$ with $h \leq \alpha < h+j$ then.

$$\epsilon(j, h) = 0$$
 if $2\alpha < j + h$,
 $\epsilon(j, h) = 1$ if $2\alpha \ge j + h$

and

$$i(j, h) = 2\alpha - j - h + 1.$$

PROOF. Let us prove by induction on j. For j=1 the proof is clear. Assume the lemma holds for j. Now if no element of $\{n_k\}$ is in [h, h+j) then there are two possibilities:

1. If $h+j \in \{n_k\}$ then

$$T^{j+1}f_h = T(T^jf_h) = Tf_{h+j} = f_{j+h+1}$$
 and $\epsilon(j+1,h) = 0$.

2. If $h+j=\alpha \in \{n_k\}$ then

$$T^{j+1}f_h = Tf_\alpha = f_{\alpha+1} + e_\alpha = f_{h+j+1} + e_{2\alpha-j-h}.$$

On the other hand, let α be the largest element of $\{n_k\}$ with $h \leq \alpha < h+j$. Again there are two possibilities:

1. If $h+j=\beta \in \{n_k\}$ then $h+j=\beta > 2\alpha$ and $\epsilon(j,h)=0$ hence

$$T^{j+1}f_h = Tf_{j+h} = Tf_\beta = f_{j+h+1} + e_{j+h} = f_{j+h+1} + e_{2\beta-j-h}$$

2. If $h+j \in \{n_k\}$ then

$$T^{j+1}f_h = T(T^jf_h) = T(f_{j+h} + \epsilon(j, h)e_{i(j,h)})$$

= $f_{j+h+1} + \epsilon(j, h)Te_{i(j,h)}$.

Now if $2\alpha < j+h$ then $\epsilon(j, h) = 0$ and $\epsilon(j+1, h) = 0$ since α is the largest element of $\{n_k\}$ in [h, j+h+1) and $2\alpha < j+h+1$. However if $2\alpha \ge j+h$ then

$$T^{j+1}f_h = f_{j+h+1} + Te_{2\alpha-j-h+1} = f_{j+h+1} + e_{2\alpha-j-h},$$

where $e_0 = 0$.

Thus $\epsilon(j+1, h) = 1$ if $2\alpha \ge j+h+1$ and then

$$i(j+1,h) = 2\alpha - j - h.$$

while $\epsilon(j+1, h) = 0$ if $2\alpha = j+h$.

LEMMA 2. Let j be given and $h_1 \neq h_2$. If $\epsilon(j, h_1) = \epsilon(j, h_2) = 1$ then $i(j, h_1) \neq i(j, h_2)$.

PROOF. Let α_1 and α_2 be the largest elements of $\{n_k\}$ in $[h_1, j+h_1)$ and $[h_2, j+h_2)$ respectively. If $\alpha_1 = \alpha_2$ then

$$i(j, h_1) = 2\alpha_1 - j - h_1 + 1 \neq 2\alpha_1 - j - h_2 + 1 = i(j, h_2).$$

If $\alpha_2 > \alpha_1$ then

$$2\alpha_1 > i + h_1 > i$$
.

since $\epsilon(j, h_1) = 1$. Thus

$$i(j, h_2) = 2\alpha_2 - j - h_2 + 1 \ge \alpha_2 - j \ge \alpha_2 - 2\alpha_1 > \alpha_1$$

but

$$\alpha_1 \geq 2\alpha_1 - j - h_1 = i(j, h_1),$$

since $\alpha_1 < j + h_1$ by its definition.

LEMMA 3. $||T^i|| \leq 2$.

PROOF. Let $y = \sum a_h f_h \in L$; then

$$||T^{j}y||^{2} = ||\sum a_{h}f_{j+h}||^{2} + ||\sum a_{h}\epsilon(j,h)e_{i(j,h)}||^{2}$$

and since the indices i(j, h) are different, for different values of h, we get

$$||T^{j}y||^{2} \leq 2 \sum |a_{h}|^{2} = 2||y||^{2}.$$

Let $z \in H$; then z = x + y where $x \in K$ and $y \in L$. Then

$$||T^{j}z||^{2} \leq (||T^{j}x|| + ||T^{j}y||)^{2} \leq (||x|| + \sqrt{2}||y||)^{2}$$

$$\leq 2(||x|| + ||y||)^{2} \leq 4(||x||^{2} + ||y||^{2}) = 4||z||^{2}.$$

LEMMA 4. The vector e_1 belongs to both $H_0(T)$ and $H_1(T)$.

PROOF. Clearly $e_1 \in H_0(T)$. Now $T^{2n_k-1}f_1 = f_{2n_k} + e_1 \rightarrow^{\omega} e_1$. Thus if $z \in H_0(T^*)$ then

$$(e_1, z) = \lim(T^{2n_k-1}f_1, z) = \lim(f_1, T^{*2n_k-1}z) = 0,$$

since weak $\lim T^{*n}z=0$. Hence $e_1 \in H_0(T^*)^{\perp} = H_1(T)$.

BIBLIOGRAPHY

- 1. B. Sz.-Nagy, Completely continuous operators with uniformly bounded iterates, Magyar Tud. Akad. Mat. Kutató Int. Közl. 4 (1959), 89-93.
- 2. S. R. Foguel, Powers of a contraction in Hilbert space, Pacific J. Math. 13 (1963), 551-562.

HEBREW UNIVERSITY, JERUSALEM