
ON CLANS OF NON-NEGATIVE MATRICES

DENNISON R. BROWN1

A clan is a compact connected topological semigroup with identity.

Professor A. D. Wallace has raised the following question [9]: Is a

clan of real »X» matrices with non-negative entries, which contains

the identity matrix, necessarily acyclic? That is to say, do all of the

Alexander-Cech cohomology groups with arbitrary coefficients (in

positive dimensions) vanish? In this paper the slightly stronger result,

that any non-negative matrix clan is contractible, is obtained. This

follows from the result, interesting in itself, that a compact group of

non-negative matrices is finite (Theorem 2).

The author wishes here to express his sincere gratitude to Professor

R. J. Koch for his helpful advice and encouragement.

The set of order w non-negative matrices is denoted by A7,,. The

real and complex general linear groups of order » are represented by

Gl(w, R) and Gl(w, C), respectively. The semigroup terminology used

is that of [8]; in particular, K denotes the minimal ideal of a clan

S, E denotes the set of idempotents of S, and for eEE, H(e) is the

maximal subgroup of 5 containing e. An iseomorphism is an isomor-

phism which is also a homeomorphism. The topology of Nn is any

locally convex topology; for example, the topology of Euclidean »2-

space.

The equation M = di&g(A, B) means that M is the matrix which,

in 2X2 block form, has the square submatrix A in the upper left

corner, the square submatrix B in the lower right corner, and zero

entries elsewhere. The kXk identity matrix is denoted by Ik when

used as a submatrix. The set of eigenvalues of a matrix M is denoted

by S(M).
The well-known theorem [l, p. 80] that a non-negative matrix M

has a real eigenvalue r such that if \ES(M), then | X| ^r is used with-

out proof. Also used without proof is the following theorem, due to

Karpelevich [3], and stated in less than full generality:

Theorem 1. Let MENn, and let M have maximal real eigenvalue 1.

If\ES(M), |X| =1, then\k = lfor some kgn.
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Lemma 1. Let XEG, a compact subgroup of Gl(«, C). If\ES(X),

then |X| =1.

Proof. The determinant function maps G homomorphically into

the unit circle. Hence l = |detX| = |XA2 • • -X„|, \iES(X). Let

P E Gl(ra, C) such that A = PXP~l is triangular,

diagonal A = (Xi, X2, • • • , X„). Since diagonal A'= (X',X2, • • • ,X5,)and

the group PCtP-1 is compact, if follows that |X¿| ^1,î = 1, • ■ -, re. This

is clearly sufficient.

Theorem 2. Let H(e) be a compact topological group, H(e) EN».

Then H(e) is finite.

Proof. Define/: H(e)-^Gl(n, R) by f(x) =x+I—e. The function

/ is clearly an iseomorphism. Since f(H(e)) is a compact subgroup of

Gl(w, R), H(e) is a Lie group. The identity component C of H(e) is

therefore open; hence it suffices to prove that H(e) is totally discon-

nected. If Ct^ \e\, then C has a nontrivial one parameter group [5,

p. 105], hence elements of infinite order. The proof is then completed

by contradiction when it is shown that every element of H(e) has

finite order.

Let X E H(e). There exists B E Gl(re, R) such that BeB'1

= diag(Jjt, 0), where rank e is assumed equal to k. Since BeB~l is an

identity for BXB~X, BXB"1 = diag(Xk, 0), where Xk is a rank k real

kXk matrix. Let/ be the iseomorphism of BH(e)B~l into Gl(re, R)

defined by f(BXB-l)=BXB~l+I-BeB-\ Since f(BH(e)B~l) is

iseomorphic to H(e), it suffices to find an integer m such that

f(BXB-1)m=f(BeB~1) = I.
Assume k<n. Note S(X) =S(BXB~1) = S(f(BXB~1))U {o}. For

if \ES(BXB~1), X?¿0, then det(X*-XI*) =0. Hence

det(/(.BXB-1) - A/) = (1 - \)n~"-det(Xk - XIk) = 0

and
\ES(f(BXB-i)).

Conversely, if X^l and\ES(f(BXB~1)), then \E S (BXB~l). Finally,
by Lemma 1, \ES(f(BXB~1)) gives | X| = 1 ; therefore \ES(BXB~l),
X^O also yields |x| =1. Since XENn, IES(BXB~1), and S(BXB~')
= 5(/(5X5-1))U{0}. By Theorem 1, S(BXß-1) E {X:X(=1, /^rej
W{o}. If k = n, a similar argument can be given. In either event

S(f(BXB-t)) C {X:X( = 1, Z g «}. Let P G Gl(w, C) such that
D = Pf(BXB~1)P~1 is lower triangular and diagonal F»= {Xi, X2, • • • ,

X„}. Note \iES(f(BXB-1)), i=l, • ■ ■ , re. Let w = least common

multiple {/¿¡X^l./.^w}. Then diagonal Dm= {l, 1, • • • , l}. Now
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if j = i—l, then (Dmp)ij = p-(Dm)ij. Hence, by the compactness of

Pf(BH(e)B-1)P-\ (Dm)ij = Q, j = i-l. By a straightforward induc-

tion, it follows that (Dm)ij = 0, j<i, i=l, ■ • • , n. Hence Dm = I, and

therefore f(BXB~l) has order ¿m, which completes the proof.

Corollary 1. Let S be a continuum semigroup in Nn. Then KEE.

Proof. Fix eEEC\K. Then eSe = H(e) [8]. Since eSe is a con-

tinuum, it is degenerate; hence H(e) = \e\. The corollary now follows

from the fact that K = U {H(e) : e E K}.
If S is a clan, it is known [8] that Hn(S) = Hn(eSe) for eEKC\E,

»^0. If, also, SENn, then by Theorem 2, Hn(S) =Hn({e}) =0, »>0.

Hence S is acyclic. It will now be shown that S is contractible. The

following lemma is due to Gluskin [2].

Lemma 2. Let SbeannXn complex matrix semigroup. Let eJEEand

fEeSe. Iffy^e, then rank/<ranke.

Proof. Suppose rank e = r, e 9e f. Choose v such that vev~l

= diag(/r, 0). Then vfv~l = diag(g, 0), since e is an identity for/. Note

g is an rXr complex matrix, and g2 = g- Since rank vfirl = rank/, it

suffices to show det(g) =0. If this is not the case, then g is an idem-

potent in Gl(r, C); hence g = Ir- But this implies f=e, contrary to

assumption. This completes the proof.

An I-semigroup is a clan on an interval such that one endpoint is

an identity and the other a zero. It is shown in [6] that the only types

of /-semigroups are the following: (i) S has the multiplication of the

real interval [0, 1]; (ii) 5 has a multiplication isomorphic to the

interval [l/2, l] under the operation x o y = max {1/2, xy); (iii) 5 is

idempotent and has a multiplication isomorphic to the interval [O, 1 ]

under the operation xo;y = min{x, y\ ; (iv) 5 is the union of a col-

lection of semigroups of types (i), (ii), and (iii) which meet only at

their respective endpoints.

Lemma 3. Let S be a clan in which, for each eEE, H(e) is totally dis-

connected. Suppose also that there exists a neighborhood V of 1 such that

VC\E=1. Then there is an I-semigroup in S having 1 as an identity.

Proof. It is well known [7] that the existence of the neighborhood

V above is sufficient to insure a local one-parameter semigroup

<r([0, 1]) in V such that ff(0) = l, ff(a)EH(l), 0<a^l, and if ff(a)

— vifyg, gEN(l), then a = b and g=l. In the same paper, it is shown

that a can be extended to a full one-parameter semigroup by defining

<r(t)=ff(l)ff(t — l) for tE [l, 2] and proceeding inductively. Now the

closure of ff([0, a>)) is a commutative clan, hence its minimal ideal is
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a connected group, and therefore a single point. It follows by a theo-

rem of Koch [4] that this clan has exactly 2 idempotents and is an

/-semigroup.

Theorem 3. Let S be a nondegenerate clan in Nn. Then S contains an

I-semigroup from 1 to K, and S is contractible.

Proof. By Lemma 2, there exists a neighborhood F of 1 containing

no other idempotents; this follows from the fact that the rank of an

idempotent equals its trace. By Theorem 2 each H(e) is finite. It

follows from Lemma 3 that there exists an /-semigroup from 1 to

eEE. By Lemma 2, ranke<rank 1. If eEK, then eSe is a nonde-

generate subclan with identity e, and the above argument produces

an /-semigroup from e to fEE, rank/<ranke. In this manner, an

idempotent of minimal rank in S is obtained, which clearly belongs to

K. The union of the /-semigroups constructed above is the desired

/-semigroup.

Let T be an /-semigroup in 5 with endpoints 1 and eEK(~\E.

Define F: SXT-^S by F(x, /)=/x/. Then F(x, l)=x, and F(x, e)

= exe = e, for each xES. Hence 5 is contractible. This completes the

proof.

By Lemma 2, no /-semigroup in N„ can be of type (iii) mentioned

above. On the other hand, it is well known that il A is a nilpotent

reXre complex matrix, then ^4n = 0. It follows that the /-semigroups

in Nn are either of type (i), or of type (iv), constructed by joining

together the endpoints of semigroups of type (i).
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