ON CLANS OF NON-NEGATIVE MATRICES

DENNISON R. BROWN¹

A clan is a compact connected topological semigroup with identity. Professor A. D. Wallace has raised the following question [9]: Is a clan of real $n \times n$ matrices with non-negative entries, which contains the identity matrix, necessarily acyclic? That is to say, do all of the Alexander-Čech cohomology groups with arbitrary coefficients (in positive dimensions) vanish? In this paper the slightly stronger result, that any non-negative matrix clan is contractible, is obtained. This follows from the result, interesting in itself, that a compact group of non-negative matrices is finite (Theorem 2).

The author wishes here to express his sincere gratitude to Professor R. J. Koch for his helpful advice and encouragement.

The set of order n non-negative matrices is denoted by N_n . The real and complex general linear groups of order n are represented by Gl(n, R) and Gl(n, C), respectively. The semigroup terminology used is that of [8]; in particular, K denotes the minimal ideal of a clan S, E denotes the set of idempotents of S, and for $e \in E$, H(e) is the maximal subgroup of S containing e. An iseomorphism is an isomorphism which is also a homeomorphism. The topology of N_n is any locally convex topology; for example, the topology of Euclidean n^2 -space.

The equation $M = \operatorname{diag}(A, B)$ means that M is the matrix which, in 2×2 block form, has the square submatrix A in the upper left corner, the square submatrix B in the lower right corner, and zero entries elsewhere. The $k \times k$ identity matrix is denoted by I_k when used as a submatrix. The set of eigenvalues of a matrix M is denoted by S(M).

The well-known theorem [1, p. 80] that a non-negative matrix M has a real eigenvalue r such that if $\lambda \in S(M)$, then $|\lambda| \leq r$ is used without proof. Also used without proof is the following theorem, due to Karpelevich [3], and stated in less than full generality:

THEOREM 1. Let $M \in N_n$, and let M have maximal real eigenvalue 1. If $\lambda \in S(M)$, $|\lambda| = 1$, then $\lambda^k = 1$ for some $k \leq n$.

Presented to the Society, November 16, 1962; received by the editors May 25, 1963

¹ This work was supported in part under NSF Contract G-14085, and is part of a dissertation presented to the Graduate Faculty of Louisiana State University.

LEMMA 1. Let $X \in G$, a compact subgroup of Gl(n, C). If $\lambda \in S(X)$, then $|\lambda| = 1$.

PROOF. The determinant function maps G homomorphically into the unit circle. Hence $1 = |\det X| = |\lambda_1 \lambda_2 \cdots \lambda_n|$, $\lambda_i \in S(X)$. Let $P \in Gl(n, C)$ such that $A = PXP^{-1}$ is triangular, diagonal $A = (\lambda_1, \lambda_2, \dots, \lambda_n)$. Since diagonal $A^t = (\lambda_1^t, \lambda_2^t, \dots, \lambda_n^t)$ and the group PGP^{-1} is compact, if follows that $|\lambda_i| \leq 1, i = 1, \dots, n$. This is clearly sufficient.

THEOREM 2. Let H(e) be a compact topological group, $H(e) \subset N_n$. Then H(e) is finite.

PROOF. Define $f: H(e) \rightarrow Gl(n, R)$ by f(x) = x + I - e. The function f is clearly an iseomorphism. Since f(H(e)) is a compact subgroup of Gl(n, R), H(e) is a Lie group. The identity component C of H(e) is therefore open; hence it suffices to prove that H(e) is totally disconnected. If $C \neq \{e\}$, then C has a nontrivial one parameter group [5, p. 105], hence elements of infinite order. The proof is then completed by contradiction when it is shown that every element of H(e) has finite order.

Let $X \in H(e)$. There exists $B \in Gl(n, R)$ such that $BeB^{-1} = \operatorname{diag}(I_k, 0)$, where rank e is assumed equal to k. Since BeB^{-1} is an identity for BXB^{-1} , $BXB^{-1} = \operatorname{diag}(X_k, 0)$, where X_k is a rank k real $k \times k$ matrix. Let f be the iseomorphism of $BH(e)B^{-1}$ into Gl(n, R) defined by $f(BXB^{-1}) = BXB^{-1} + I - BeB^{-1}$. Since $f(BH(e)B^{-1})$ is iseomorphic to H(e), it suffices to find an integer m such that $f(BXB^{-1})^m = f(BeB^{-1}) = I$.

Assume k < n. Note $S(X) = S(BXB^{-1}) = S(f(BXB^{-1})) \cup \{0\}$. For if $\lambda \in S(BXB^{-1})$, $\lambda \neq 0$, then $\det(X_k - \lambda I_k) = 0$. Hence

$$\det(f(BXB^{-1}) - \lambda I) = (1 - \lambda)^{n-k} \cdot \det(X_k - \lambda I_k) = 0$$

and

$$\lambda \in S(f(BXB^{-1})).$$

Conversely, if $\lambda \neq 1$ and $\lambda \in S(f(BXB^{-1}))$, then $\lambda \in S(BXB^{-1})$. Finally, by Lemma 1, $\lambda \in S(f(BXB^{-1}))$ gives $|\lambda| = 1$; therefore $\lambda \in S(BXB^{-1})$, $\lambda \neq 0$ also yields $|\lambda| = 1$. Since $X \in N_n$, $1 \in S(BXB^{-1})$, and $S(BXB^{-1}) = S(f(BXB^{-1})) \cup \{0\}$. By Theorem 1, $S(BXB^{-1}) \subset \{\lambda : \lambda^t = 1, t \leq n\}$ $\cup \{0\}$. If k = n, a similar argument can be given. In either event $S(f(BXB^{-1})) \subset \{\lambda : \lambda^t = 1, t \leq n\}$. Let $P \in Gl(n, C)$ such that $D = Pf(BXB^{-1})P^{-1}$ is lower triangular and diagonal $D = \{\lambda_1, \lambda_2, \cdots, \lambda_n\}$. Note $\lambda_i \in S(f(BXB^{-1}))$, $i = 1, \cdots, n$. Let $m = \text{least common multiple } \{t_i : \lambda_i^t = 1, t_i \leq n\}$. Then diagonal $D^m = \{1, 1, \cdots, 1\}$. Now

if j=i-1, then $(D^{mp})_{ij}=p\cdot(D^m)_{ij}$. Hence, by the compactness of $Pf(BH(e)B^{-1})P^{-1}$, $(D^m)_{ij}=0$, j=i-1. By a straightforward induction, it follows that $(D^m)_{ij}=0$, j< i, $i=1, \cdots, n$. Hence $D^m=I$, and therefore $f(BXB^{-1})$ has order $\leq m$, which completes the proof.

Corollary 1. Let S be a continuum semigroup in N_n . Then $K \subset E$.

PROOF. Fix $e \in E \cap K$. Then eSe = H(e) [8]. Since eSe is a continuum, it is degenerate; hence $H(e) = \{e\}$. The corollary now follows from the fact that $K = \bigcup \{H(e) : e \in K\}$.

If S is a clan, it is known [8] that $H^n(S) = H^n(eSe)$ for $e \in K \cap E$, $n \ge 0$. If, also, $S \subset N_n$, then by Theorem 2, $H^n(S) = H^n(\{e\}) = 0$, n > 0. Hence S is acyclic. It will now be shown that S is contractible. The following lemma is due to Gluskin [2].

LEMMA 2. Let S be an $n \times n$ complex matrix semigroup. Let $e, f \in E$ and $f \in Se$. If $f \neq e$, then rank f < rank e.

PROOF. Suppose rank e = r, $e \neq f$. Choose v such that $vev^{-1} = \operatorname{diag}(I_r, 0)$. Then $vfv^{-1} = \operatorname{diag}(g, 0)$, since e is an identity for f. Note g is an $r \times r$ complex matrix, and $g^2 = g$. Since rank $vfv^{-1} = \operatorname{rank} f$, it suffices to show $\det(g) = 0$. If this is not the case, then g is an idempotent in $\operatorname{Gl}(r, C)$; hence $g = I_r$. But this implies f = e, contrary to assumption. This completes the proof.

An *I-semigroup* is a clan on an interval such that one endpoint is an identity and the other a zero. It is shown in [6] that the only types of *I*-semigroups are the following: (i) S has the multiplication of the real interval [0, 1]; (ii) S has a multiplication isomorphic to the interval [1/2, 1] under the operation $x \circ y = \max\{1/2, xy\}$; (iii) S is idempotent and has a multiplication isomorphic to the interval [0, 1] under the operation $x \circ y = \min\{x, y\}$; (iv) S is the union of a collection of semigroups of types (i), (ii), and (iii) which meet only at their respective endpoints.

LEMMA 3. Let S be a clan in which, for each $e \in E$, H(e) is totally disconnected. Suppose also that there exists a neighborhood V of 1 such that $V \cap E = 1$. Then there is an I-semigroup in S having 1 as an identity.

PROOF. It is well known [7] that the existence of the neighborhood V above is sufficient to insure a local one-parameter semigroup $\sigma([0, 1])$ in V such that $\sigma(0) = 1$, $\sigma(a) \notin H(1)$, $0 < a \le 1$, and if $\sigma(a) = \sigma(b)g$, $g \in N(1)$, then a = b and g = 1. In the same paper, it is shown that σ can be extended to a full one-parameter semigroup by defining $\sigma(t) = \sigma(1)\sigma(t-1)$ for $t \in [1, 2]$ and proceeding inductively. Now the closure of $\sigma([0, \infty))$ is a commutative clan, hence its minimal ideal is

a connected group, and therefore a single point. It follows by a theorem of Koch [4] that this clan has exactly 2 idempotents and is an *I*-semigroup.

THEOREM 3. Let S be a nondegenerate clan in N_n . Then S contains an I-semigroup from 1 to K, and S is contractible.

PROOF. By Lemma 2, there exists a neighborhood V of 1 containing no other idempotents; this follows from the fact that the rank of an idempotent equals its trace. By Theorem 2 each H(e) is finite. It follows from Lemma 3 that there exists an I-semigroup from 1 to $e \in E$. By Lemma 2, rank e < rank 1. If $e \notin K$, then eSe is a nondegenerate subclan with identity e, and the above argument produces an I-semigroup from e to $f \in E$, rank f < rank e. In this manner, an idempotent of minimal rank in S is obtained, which clearly belongs to K. The union of the I-semigroups constructed above is the desired I-semigroup.

Let T be an I-semigroup in S with endpoints 1 and $e \in K \cap E$. Define $F: S \times T \rightarrow S$ by F(x, t) = txt. Then F(x, 1) = x, and F(x, e) = exe = e, for each $x \in S$. Hence S is contractible. This completes the proof.

By Lemma 2, no *I*-semigroup in N_n can be of type (iii) mentioned above. On the other hand, it is well known that if A is a nilpotent $n \times n$ complex matrix, then $A^n = 0$. It follows that the *I*-semigroups in N_n are either of type (i), or of type (iv), constructed by joining together the endpoints of semigroups of type (i).

BIBLIOGRAPHY

- 1. F. R. Gantmacher, Applications of the theory of matrices, Interscience, New York, 1959; pp. 61-105.
 - 2. L. M. Gluskin, On matrix semigroups, Izv. Akad. Nauk 22 (1958), 439-448.
- 3. F. I. Karpelevich, On the characteristic roots of matrices with non-negative elements, Izv. Akad. Nauk 15 (1951), 361-383.
- 4. R. J. Koch, On topological semigroups, Dissertation, Tulane University, New Orleans, La., 1953.
- 5. D. Montgomery and L. Zippin, *Topological transformation groups*, Interscience, New York, 1955; p. 105.
- 6. P. S. Mostert and A. L. Shields, On the structure of semigroups on a compact manifold with boundary, Ann. of Math. 65 (1957), 117-143.
- 7. ——, One parameter semigroups in a semigroup, Trans. Amer. Math. Soc. 96 (1960), 510-517.
- **8.** A. D. Wallace, The structure of topological semigroups, Bull. Amer. Math. Soc. **56** (1955), 95-112.
- 9. ——, Problems concerning semigroups, Bull. Amer. Math. Soc. 68 (1962), 447-448.