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It has been shown that a monotone Hausdorff moment sequence

can be characterized by Stieltjes type quadratic forms. This was a

result of the theory of chain sequences [4]. In the present paper we

shall characterize an "extended" monotone Hausdorff moment se-

quence by Jacobi type quadratic forms. This will be done by extend-

ing the properties of ordinary chain sequences.

The paper is in two sections. In the first section a relation between

chain sequences and Jacobi type quadratic forms will be established.

The connection between the "extended" monotone Hausdorff mo-

ment problem and chain sequences will be discussed in the second sec-

tion.

1. Jacobi forms and chain sequences. In the theory of positive

definite continued fractions a sequence of nonnegative Stieltjes forms

is characterized. It is shown that the quadratic form

n n—1

(1.1) Y Xp — 2 Y apxpXp+h       n — 2, 3, 4, • • • ,
3,-1 p=l

is positive semidefinite if and only if

(1.2) 4 - (1 - fo_i)fo, 0 é gP-i al,       p = 1,2,3, ■■■   (go = 0).

This result is an immediate consequence of a more general theorem

characterizing positive definite Jacobi fractions.

We shall now state an analogous theorem for Jacobi forms.

Theorem 1.1. The quadratic forms

n n—1

(1.3) Y (! + °p)xP - 2 Y dpXpXp+i,
p—i p=i

and
n n—1

(1.4) 2(1 — bp)xp - 2 2 apXpXp+i,       n = 2,3, 4, • • • ,
p—i p=i

are positive semidefinite if and only if

2
(1-5) ap = 4(1 - g2p-2)(l - g2p-i)g2p-ig2p,
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bp =  1 - 2(1 - g2p-i)g2p-2 - 2(1 - g2p-2)g2p-i,

(1.6)
= 2(1 — g2p-2)(l — g2p-i) + 2g2p-3g2p-2 — 1,

where

O^ÍP-iál,       p=l,2,3,---    (g_1=l,go = 0).

Such sequences shall be called double chain sequences. The a\ and

bP shall be referred to as the elements and the gp as the parameters.

Double chain sequences arise in the continued fraction solution of the

"extended" monotone Hausdorff moment problem [3].

Proof. We designate the determinants associated with the quad-

ratic forms (1.3) and (1.4) by Bp(l) and Bp( — 1). Their recurrence

formulas are

(1.7) Bp+i(l) = (1 + bP+i)Bp(l) - a25p_x(l)

and

iW-1) = (1 - bp+i)Bp(-l) - a2pBp_i(-l),     p = 0,l,2,---

(£L,(1) = .ELi(-l) = 0, Bo(l) = Bo(-l) = 1).

It can be shown that if the a\ and bp are of the forms (1.5) and (1.6),

then

(1.9) Bv(l) = 2P(1 - gl)(l - g2) ••• (1 - glp_i)

and

BP(-l) = 2Pgi(l - g2)g3 • • • (1 - g2p-2)g2p-i,

p = 1, 2, 3, • • •    (go = 0),
(1.10)

where the gp are not necessarily between zero and one. These relations

follow immediately by an induction on (1.7) and (1.8).

The proof consists of two cases.

Case 1. The a\ all positive. We consider the necessity part of the

proof. The nonnegativity of the forms (1.3) and (1.4) implies that

Bp(l) ^0 and Bp( — 1) ^0. We observe moreover that the Bp(l) and

Bp(-l) are positive by (1.7) and (1.8). Set &i = 1 — 2gx. From (1.9)

and (1.10) it follows that 0 <gi <1. Next write

2

(LU) ai = i-(l - gi)gig2

and

(1.12) 62 = 1 - 2(1 - gi)gi - 2(1 - gt)St.
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Notice that g29^1. The formulas (1.9) and (1.10) give

(1.13) B2(l) = 2(1 - g2)(l - g3)Bi(l)

and

(1.14) B2(-l) = 2(1 - g2)gsBi(-l).

From (1.11), (1.13) and (1.14) we see that g2, (l-g2)(l-g3) and

(1— gî)i3 are each positive. It follows that 0 <g2 < 1 and 0 <g3 < 1.

We proceed with the induction. Suppose that 0<g2p_i<l for

p=l, 2,3, ■ ■ ■ ,k, k^2. Set

2

(1-15) ak = 4(1 - g2k-i)(l — gik-i)g2k-ig2k,

and

(1-16) bk+i = 1 — 2(1 — g2k-i)g2k — 2(1 — g2k)g2k+i.

It is necessary to show that g2k is not equal to one. The following

argument is given. Since Bk+i(l)>0, using (1.9), and the definition

of a2t, relation (1.7) yields the inequality (l+bk+l)>2g2k-ig2k. In a

similar manner using (1.8) and (1.10), we obtain

(1 — bk+i) > 2(1 — g2k-i)g2k.

Adding these inequalities we have g2k <1. By (1.9) and (1.10) we have

(1.17) Bk+i(l) = 2(1 - g2k)(l - gn+i)Bk(l)

and

(1.18) Bk+i(-l) = 2(1 - g2k)g2k+iBk(-l).

From (1.15), (1.17), (1.18) and our assumptions under the induction

it follows that g2k, (l-g2k)(l-gik+i), and (l-g2k)g2k+i are positive.

Hence 0<g2k<l and 0<g2t+i<l, and the induction is complete.

The sufficiency part of the proof follows immediately from (1.9)

and (1.10). It is important to notice that the formulas (1.9) and (1.10)

hold only with go = 0. The existence of such a sequence of minimal

parameters will be discussed in §2.

Case 2. The a\ nonnegative. In this case the determinants BP(1)

and Bp( — 1) separate into blocks of nonoverlapping determinants.

We suppose that a\, a\, ■ ■ ■ , a\_v are positive and a\ is zero. (This

corresponds to the case of a terminating continued fraction.) It will

be seen that the first p forms in (1.3) and (1.4) are positive semi-

definite if and only if a\, a\, ■ ■ ■ , a\-x and b\, b2, • • • , bp form a

terminating double chain sequence. The proof is similar to Case 1.



732 ROBERT SEALL AND MARION WETZEL [October

If a finite number of the aP are equal to zero, we simply repeat the

argument in Case 2 for each finite block and the argument in Case 1

for the infinite block. If an infinite number of the a\ are equal to

zero, we repeat the argument of Case 2 for each finite block. This

completes the proof.

We remark that Theorem 1.1 can be obtained by an inductive

process using the theorem indicated at the beginning of the section

[4]. This theorem says that the quadratic form

2
(1.19) ^ZßpXP — 2^Z ctpXpXp+i,       n = 2, 3, 4, • • • ,

P=i P=\

is nonnegative if and only if ßn = § and there exist numbers h0, hi, ■ ■ ■ ,

such that a$, = ßnßn+i(l—hn-i)hK, 0^hn-i^l, n=l, 2, 3, • • • . In the

proof of Theorem 1.1 by this method we apply the transformation

(1.20) K =-    **"**.,<--> »=1,2,3,..-    (Äo = 0),
g2n-lgln +   (1   ~  gln)(l   ~  gin+l)

in (1.3) and

(1.21)*.---(1~g"")g2n     ^-,»=1,2,3,...    (*, = 0),

(1   —  g2n-l)g2n +   (1   ~  g2n)g2n+l

in (1.4).

2. Jacobi fractions and moment sequences. In the theory of totally

monotone sequences the monotone Hausdorff moment problem is

solved [S]. A sequence of real numbers {cn}, n = 0, 1, 2, • • • (c0=l),

is said to be a monotone Hausdorff moment sequence if there exists

a monotone nondecreasing real function <p(u), O^w^l, such that

Cn= Jluna\p(u), » = 0, 1, 2, "... It is shown that such a sequence is

a monotone Hausdorff moment sequence if and only if the power

series ^Zñ-o cnxn has a Stieltjes type continued fraction expansion of

the form

(2 11 —      ^ ~ g0^lX      (1 - gùë*x

1  - 1 - 1

where 0^gn^l, « = 0, 1, 2, • ■ • .
The continued fraction solution of the "extended" monotone Haus-

dorff moment problem has recently been given [3 ]. A sequence of real

numbers {cn}, n — 0, 1, 2, • • • (c0 = l), is said to be an "extended"

monotone Hausdorff moment sequence if there exists a monotone

nondecreasing real function <b(u), — 1 = m á 1, such that c„

=J1_iWd<p(u),n = 0, 1, 2, ■ • ■ .
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Theorem 2.1. The sequence {cn} is an "extended" Hausdorff moment

sequence if and only if the power series ^™_0 cnxn has a Jacobi type

continued fraction expansion

(2.2)
1 aix¿ a2x¡

1 + bix — 1 + b2x — 1 + b3x —

in which {an}, {bn} form a double chain sequence.

We shall indicate how the theorem may be obtained by a trans-

formation. It is well known that P(z) = Ym-o cr&n is a moment gen-

erating function for the "extended" manotone Hausdorff moment

problem if and only if Q(w) = (l+s)P(z), where w = (2z/(l+z)), is a

moment generating function for the regular monotone Hausdorff

moment problem.

Proof. By replacing x by 2x/(l+x) in the even part of (2.1) and

making an equivalence transformation we obtain a continued frac-

tion of the type (2.2) in which the ap and bp are of the forms (1.5) and

(1.6). Using the theorem stated at the beginning of the section the

proof is immediate.

It is possible to extend several further results in the theory of

ordinary chain sequences. One of these pertains to the minimal pa-

rameters of a chain sequence. In the proof of Theorem 1.1 the follow-

ing result was used: A double chain sequence [a2P}, {bp} has minimal

parameters lp, mp, where 0g/p^g2p_i, 0^mp^g2p, p = 0, 1, 2, • ■ • ,

given by

h =
1 -bi

(2.3) /*+! =

0    if   mP = 1,

bp+i - [l - 2mp(l - lp)]

— 2(1 — mp)
if   mp < 1,

p * 1, 2, 3,

mo = 0,

[0    if   mp = 1,    or   lp+i = 0 or 1,

mp+i =

(2.4)

2
ap+i

if   mP < 1, 0 < lp+i < 1,
14(1 - mp)lp+i(l - lp+i)

p = 0, 1, 2, •• • .

The proof of (2.3) and (2.4) follows by the methods of ordinary chain

sequences.
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The minimal parameters of a double chain sequence have been

shown to have a geometric representation in "extended" Hausdorff

moment spaces [l], [2], [3].

By contractions and the methods for ordinary chain sequences ex-

pressions for the maximal parameters of a double chain sequence

can be obtained. In addition to these formulas, theorems (11.2),

(19.1), and (20.2) of [4] can also be extended by the same methods

to the case of double chain sequences.
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