THE STRUCTURE OF HYPERREDUCIBLE TRIANGULAR ALGEBRAS

JOHN R. SCHUE

Introduction. In [5] Kadison and Singer have defined triangular algebras of operators on a Hilbert space and have investigated a number of their properties with the major emphasis on classification and examples. It is the purpose of this paper to give a new construction for the hyperreducible algebras which gives some additional insight into their structure. In particular, Theorem 3 shows that any algebra 3 of this form with diagonal α can be written $3 = \alpha + 8$, where α is the weak closure of an increasing sequence of weakly closed nilpotent ideals.

1. Notation and spectral theory. $\mathfrak A$ will denote a fixed maximal abelian self-adjoint subalgebra of a factor $\mathfrak B$ acting on a separable Hilbert space $\mathfrak K$. For $X \in \mathfrak B$, define the operators L_X , R_X , D_X on $\mathfrak B$ by the equations $L_XY = XY$, $R_XY = YX$, and $D_XY = XY - YX$ for $Y \in \mathfrak B$. If the uniform topology is used on $\mathfrak B$, each of these operators is bounded and $||L_x|| = ||R_x|| = ||X||$. Furthermore, D_X is a derivation on $\mathfrak B$. Let $\mathfrak L$ and $\mathfrak A$ denote the sets of L_A , R_A , $A \in \mathfrak A$, respectively. Then $\mathfrak L$ and $\mathfrak A$ are commutative Banach algebras and each is isomorphic to $\mathfrak A$ under the natural mappings. Let $\mathfrak C$ be the uniformly closed algebra of operators on B generated by $\mathfrak L \cup \mathfrak R$. Thus $\mathfrak C$ contains the identity operator.

We let Δ denote the spectrum of α , i.e., the set of all homomorphisms of α onto the complex numbers. Δ is a compact Hausdorff space under the Gel'fand topology and α , $\mathfrak L$, and $\mathfrak R$ all may be identified with the continuous complex-valued functions on Δ . If we let Γ denote the spectrum of $\mathfrak C$ then Γ is also compact and Hausdorff in the Gel'fand topology.

THEOREM 1. Suppose $\gamma \in \Gamma$ and α , β are the restrictions of γ to $\mathfrak L$ and $\mathfrak R$, respectively. Then the mapping $\gamma \to \gamma' = (\alpha, \beta)$ is a homeomorphism of Γ onto the product space $\Delta \times \Delta$.

For the proof we need two lemmas.

LEMMA 1. For X, $Y \in \mathfrak{B}$, $L_x R_y = 0$ implies X = 0 or Y = 0.

PROOF. Let $g = \{z: L_z R_y = 0\}$. Then $X \in g$ and g is a weakly closed

Received by the editors January 25, 1963 and, in revised form, May 27, 1963.

two-sided ideal of \mathfrak{B} so that either $\mathfrak{g} = \{0\}$ or $\mathfrak{g} = \mathfrak{B}$. In the first case X = 0 and in the second Y = 0.

LEMMA 2. Let C_0 be the set of all finite linear combinations of the form $\sum \lambda_i L_{E_i} R_{F_i}$ where E_i and F_i are projections in C_i and either $E_i E_j = 0$ or $F_i F_j = 0$ for $i \neq j$. Then C_0 is a dense subalgebra of C_i .

PROOF. The usual operations with projections show fairly directly that \mathfrak{C}_0 is a subalgebra. In fact, with the obvious modifications, the proof is like that showing that the set of all finite linear combinations of characteristic functions of sub-rectangles (with sides parallel to the axes) of a given planar rectangle forms an algebra. From the spectral theorem applied to A and B it is easy to see that each $L_A R_B$ (A, $B \in \mathfrak{C}$) can be approximated uniformly by elements of \mathfrak{C}_0 and thus \mathfrak{C}_0 is dense in \mathfrak{C} .

PROOF OF THEOREM 1. For $\gamma \in \Gamma$ and an element of \mathfrak{C}_0 , $\gamma(\sum L_{E_i}R_{F_i}) = \sum \alpha(E_i)\beta(F_i)$. Since \mathfrak{C}_0 is uniformly dense in \mathfrak{C} this means that γ is determined uniquely by α and β and thus the correspondence defined on Γ is one-one. If $\{\gamma_j\}$ is a directed sequence in Γ converging to γ and $\gamma_j = (\alpha_j, \beta_j)$, $\gamma' = (\alpha, \beta)$ then $\gamma_j(A) \longrightarrow \gamma(A)$ for all $A \in \mathfrak{C}$ so that $\{\alpha_j\}$ and $\{\beta_j\}$ converge to α and β , respectively. Thus $\gamma'_j \longrightarrow \gamma'$ and the mapping is continuous. Since Γ is compact, the image is compact and it only remains to prove that this image is all of $\Delta \times \Delta$.

Thus suppose $(\alpha, \beta) \in \Delta \times \Delta$ and $C = \sum \lambda_i L_{E_i} R_{F_i} \in \mathfrak{C}_0$. Let $\gamma(C) = \sum \lambda_i \alpha(E_i) \beta(F_i)$. If $\gamma(C) \neq 0$ there is a j with $\alpha(E_j) = \beta(F_j) = 1$. For $i \neq j$ either $E_i E_j = 0$ or $F_i F_j = 0$ so that, in any case, $\alpha(E_i) \beta(F_i) = 0$ and hence $\gamma(C) = \lambda_j$. Since $L_{E_j} R_{F_j} \neq 0$, there is an $X \in \mathfrak{B}$ with ||X|| = 1 and $E_j X F_j = X$. Necessarily $E_i X F_i = 0$ for $i \neq j$ and thus $C(X) = \lambda_j X$ so that $||C|| \geq |\lambda_j| = |\gamma(C)|$. The mapping $C \to \gamma(C)$ will be linear on \mathfrak{C}_0 and the argument above shows that it is well-defined and norm-decreasing. γ is clearly multiplicative on \mathfrak{C}_0 and thus can be extended uniquely to all of \mathfrak{C} giving a homomorphism of \mathfrak{C} also denoted by γ . Since $\gamma(L_1) = 1$, γ is nontrivial and thus belongs to Γ . Since $\gamma' = (\alpha, \beta)$ the proof is complete.

2. Construction of triangular algebras.

DEFINITIONS. Because of the separability assumption there exists a self-adjoint element $A \in \mathfrak{A}$ such that every element of \mathfrak{A} is a bounded measurable function of A. Thus $\mathfrak{A} = \{X: D_A X = 0\}$. We choose a fixed A with these properties and, without any significant loss of generality, assume that the spectrum of A lies in the interval [0, 1] and contains both end points. For $\gamma = (\alpha, \beta) \in \Gamma$ let $f(\gamma) = \gamma(D_A) = \alpha(A) - \beta(A)$. Thus, relative to \mathfrak{C} , the spectrum of D_A is given by

the range of f, a subset of [-1, 1]. Since the range of f is real and compact, it does not separate the plane, and the general theory of Banach algebras implies that the spectrum of D_A , relative to the algebra of all bounded operators on \mathfrak{B} , is also given by the range of f.

For real λ and $\epsilon > 0$, let $S(\lambda, \epsilon)$ denote the linear manifold consisting of all $X \in \mathfrak{B}$ for which there is a constant K_x such that $\|(D_A - \lambda)^n X\|$ $\leq \epsilon^n K_x$ for $n = 1, 2, \cdots$. Then $S(\lambda, \epsilon)$ is invariant under all bounded operators on \mathfrak{B} which commute with D_A . For a compact subset M of the real numbers, let $S(M, \epsilon)$ be the closure in the weak operator topology of \mathfrak{B} of the manifold spanned by $\{S(\lambda, \epsilon) : \lambda \in M\}$ and let $S(M) = \bigcap_{\epsilon > 0} S(M, \epsilon)$. Finally, for any Borel set N of the real numbers, let S(N) be the weak closure of the manifold spanned by $\{S(M) : M \subseteq N, M \text{ compact}\}$. Thus S(N) is invariant under all bounded operators on \mathfrak{B} commuting with D_A . In particular, $\mathfrak{A} \subseteq S(\{0\})$.

LEMMA 3. Suppose M is a real Borel set and $|\lambda| > 1$ for all $\lambda \in M$. Then $S(M) = \{0\}$.

PROOF. The proof reduces to the case when M is compact. The hypothesis implies M lies within the resolvent set for D_A . Thus for $\gamma \in M$, $D_A - \lambda I$ has a bounded inverse $B(\lambda)$ and the mapping $\lambda \to B(\lambda)$ is holomorphic on an open set containing M. This implies the existence of a constant K such that $||B(\lambda)|| \le K$ for all $\lambda \in M$. Choose ϵ with $0 < \epsilon < K^{-1}$. For $\lambda \in M$ and $X \in S(\lambda, \epsilon)$, $||X|| = ||B(\lambda)^n (D_A - \lambda)^n X|| \le (K\epsilon)^n K_x$ for all n > 0 and thus ||X|| = 0. Thus $S(M, \epsilon) = \{0\}$ and the same is true for S(M).

LEMMA 4. For Borel sets M, N; $S(M)S(N)\subseteq S(M+N)$ and $S(M)^* = S(-M)$.

PROOF. Suppose $\epsilon > 0$ and $X \in S(\lambda, \epsilon)$, $Y \in S(\mu, \epsilon)$. Since D_A is a derivation,

$$\left\| (D_A - (\lambda + \mu))^n X Y \right\| = \left\| \sum_n \left(C_m ((D_A - \lambda)^m X) (D_A - \mu)^{n-m} Y \right) \right\|$$

$$\leq \sum_n C_m \epsilon^m K_X \epsilon^{n-m} K_Y = (2\epsilon)^n K_X K_Y.$$

Thus $S(\lambda, \epsilon)S(\mu, \epsilon) \subseteq S(\lambda + \mu, 2\epsilon)$.

Suppose now that M, N are compact, $\lambda_i \in M$, $\mu_j \in N$, $X_i \in S(\lambda_i, \epsilon)$, $Y_j \in S(\mu_j, \epsilon)$, and $X = \sum X_i$, $Y = \sum Y_j$. Then $XY = \sum \sum X_i Y_j$ so that $XY \in S(M+N, 2\epsilon)$. The sets of X and Y obtained in this way are weakly dense in $S(M, \epsilon)$ and $S(N, \epsilon)$, respectively. Since, in the weak operator topology, multiplication is continuous in each factor separately, we then have $S(M)S(N) \subseteq S(M, \epsilon)S(N, \epsilon) \subseteq S(M+N, 2\epsilon)$.

Since ϵ was arbitrary, this implies $S(M)S(N) \subseteq S(M+N)$ for compact M and N. The general case follows immediately from this.

Induction on n shows that $((D_A - \lambda)^n X)^* = (-1)^n ((D_A + \lambda)^n X^*)$ for real λ and $X \in \mathfrak{G}$. Thus $S(\lambda, \epsilon)^* = S(-\lambda, \epsilon)$. A proof like that used above shows that $S(M)^* = S(-M)$.

COROLLARY. For each $\lambda > 0$, $S([\lambda, 1])$ is a weakly closed nilpotent subalgebra of \mathfrak{B} . In fact, if n is any integer with $n\lambda > 1$, the product of any n factors taken from $S([\lambda, 1])$ is zero.

DEFINITIONS. Let $S_0 = \bigcup_{\lambda>0} S([\lambda, 1])$ and S = S((0, 1]). Let 3 be the algebraic sum of α and S. By virtue of Lemma 4 the following assertions are evident:

- (1) 3 is a subalgebra of 3.
- (2) So and S are two-sided ideals of 3.
- (3) Every element of S₀ is nilpotent.
- (4) S is the weak closure of S₀.

It will be shown below that 3 is a maximal hyperreducible triangular algebra with diagonal α .

Let E be the real spectral measure associated with A and let $E_{\lambda} = E((-\infty, \lambda))$. Then $E_{\lambda} = \sup E_{\mu}$ where $\mu < \lambda$ so that $E_{0} = 0$. Also $E_{\lambda} = 1$ for $\lambda > 1$ and the set of E_{λ} generates α as a von Neumann algebra.

For λ real and $\epsilon > 0$ let $\mathfrak{F}(\lambda, \epsilon)$ be the set of vectors $u \in \mathfrak{X}$ such that $\|(A-\lambda)^n u\| \le \epsilon^n K_u$ for some constant K_u and $n=1, 2, \cdots$. If we let $\mathfrak{F}(N, \epsilon)$ be the closed subspace spanned by $\{\mathfrak{F}(\lambda, \epsilon) : \lambda \in N\}$ then it follows from a result in [3, pp. 66-69] that if N is compact, the range of E(N) equals $\mathfrak{F}(N) = \bigcap_{\epsilon > 0} \mathfrak{F}(N, \epsilon)$. For a Borel set N we use $\mathfrak{E}(N)$ to denote the range of the projection E(N).

THEOREM 2. For Borel sets M and N, $S(M)E(N) \subseteq E(M+N)$.

Proof. Suppose λ , μ are real and $\epsilon > 0$. Choose $u \in \mathfrak{F}(\mu, \epsilon)$ and $X \in S(\lambda, \epsilon)$. Then

$$\begin{aligned} \left\| (A - (\lambda + \mu))^n X u \right\| &= \left\| ((D_A - \lambda) + (R_A - \mu))^n X u \right\| \\ &= \left\| \sum_n C_m (D_A - \lambda)^{n-m} X (A - \mu)^m u \right\| \\ &\leq \sum_n C_m \epsilon^m K_X \epsilon^{n-m} K_u = (2\epsilon)^n K_X K_u. \end{aligned}$$

Thus $S(\lambda, \epsilon) \mathfrak{F}(\mu, \epsilon) \subseteq \mathfrak{F}(\lambda + \mu, 2\epsilon)$.

An argument like that used in the proof of Lemma 4 can now be used to prove the assertion of the theorem when M and N are com-

pact. By using approximations with compact subsets the general assertion follows from this.

Corollary. For any real λ the range of $1-E_{\lambda}$ is invariant under 5.

LEMMA 5. (1) Suppose
$$0 \le \mu < \lambda \le 1$$
. Then $(1 - E_{\lambda}) \otimes E_{\mu} \subseteq S_0$. (2) For any λ , $(1 - E_{\lambda}) \otimes E_{\lambda} \subseteq S$.

PROOF. (1) Suppose $\epsilon > 0$. Let $\lambda_0 = \lambda$ and choose $\lambda_1, \dots, \lambda_n$ with $\lambda_n > 1$ such that each of the intervals $[\lambda_0, \lambda_1), \dots, [\lambda_{n-1}, \lambda_n)$ has length less than ϵ . Let $E_i = E([\lambda_{i-1}, \lambda_i))$, $i = 1, \dots, n$. Then $1 - E_{\lambda} = \sum E_i$. Similarly we can partition $[0, \mu)$ into m disjoint intervals of length less than ϵ and express E_{μ} as the sum of m mutually orthogonal projections $F_j \in \mathfrak{A}$. Choose arbitrary points α_i , β_j in the ith and jth intervals of the partitions of $[\lambda_0, \lambda_n)$ and $[0, \mu)$, respectively. Then $\alpha_i - \beta_j \geq \lambda - \mu > 0$.

For
$$X \in \mathfrak{B}$$
, $(1 - E_{\lambda})XE_{\mu} = \sum \sum E_{i}XF_{j}$. For a positive integer k ,
$$\|(D_{A} - (\alpha_{i} - \beta_{j}))^{k}E_{i}XF_{j}\| = \|((L_{A} - \alpha_{i}) - (R_{A} - \beta_{j}))^{k}E_{i}XF_{j}\|$$

 $\leq \sum_{k} C_{p} || (A - \alpha_{i})^{p} E_{i} || || X || || (A - \beta_{j})^{k-p} F_{j} ||$

$$\leq (2\epsilon)^k ||X||.$$

Thus $E_i X F_j \in S(\alpha_i - \beta_j, 2\epsilon) \subseteq S([\lambda - \mu, 1]) \subseteq S_0$.

(2) For any X and $0 \le \lambda \le 1$, $(1 - E_{\lambda})XE_{\lambda}$ is a weak limit of operators of the form $(1 - E_{\lambda})XE_{\mu}$ where $\mu < \lambda$, hence lies in 8.

THEOREM 3. 3 is a maximal hyperreducible triangular algebra with diagonal a. Moreover, every algebra of this type (acting on a separable space) is obtained by a construction like that given above.

PROOF. Let \mathfrak{I}_1 be the set of all $X \in \mathfrak{G}$ which leave the range of $1 - E_{\lambda}$ invariant for all λ . It is shown in [5, Theorem 3.1.1] that \mathfrak{I}_1 is a maximal hyperreducible triangular algebra and we have proved that $\mathfrak{I} \subseteq \mathfrak{I}_1$. It remains to prove $\mathfrak{I}_1 \subseteq \mathfrak{I}$. For the proof we use the diagonalization process developed by von Neumann and generalized by Kadison and Singer in [4, pp. 386–387].

Let $\{\lambda_n\}$ be a countable dense subset of [0, 1] and $E_n = E_{\lambda_n}$. Then $\{E_n\} \cup \{1\}$ generates $\mathfrak A$ as a von Neumann algebra. Define the projection P_n on $\mathfrak A$ by $P_n(X) = E_n X E_n + (1 - E_n) X (1 - E_n)$. Then $\|P_n(X)\| \leq \|X\|$ and P_n leaves $\mathfrak I_1$ invariant. For $X \in \mathfrak I_1$, $X = P_n(X) + (1 - E_n) X E_n$ and the latter term is in $\mathfrak A$ by virtue of Lemma 5. Let $X_0 = X$ and $X_n = P_n(X_{n-1})$ for $n \geq 1$. Then $X_n \in \mathfrak I_1$ and, by induction on n, we have $X = X_n + S_n$ where $S_n \in \mathfrak A$. Because of the compactness of the unit sphere of $\mathfrak A$ in the weak topology a subsequence $\{X_{nk}\}$

converges weakly to an element $B \in \mathfrak{B}$ and thus $\{S_{n_k}\}$ converges weakly to some $S \in \mathfrak{S}$. Since B will commute with all E_n , $B \in \mathfrak{A}$ and hence X = B + S lies in 3 so that $\mathfrak{I}_1 \subseteq \mathfrak{I}$.

If 3 is any maximal hyperreducible triangular algebra with diagonal α , a modification of the proof of Theorem 3.3.1 in [5] shows that it is possible to construct a spectral family $\{E_{\lambda}: 0 \leq \lambda \leq 1\}$ of projections in α such that 3 is the set of all $X \in \alpha$ with $E_{\lambda}X = E_{\lambda}XE_{\lambda}$ for all λ . If we define A by $A = \int \lambda dE_{\lambda}$, then $\alpha = \{X: D_{A}X = 0\}$, and if we use this A in the construction, the result will be 3, as shown in the preceding part of the proof.

3. Determination of $\alpha \cap s$.

REMARK. In connection with the structure of 3 the question arises as to necessary conditions in order that the sum $\alpha+8$ be direct. A complete solution is given here for the case when α is of Type I or II. A question which seems to be related to this arises regarding the possibility of expressing each $X \subseteq 3$ as X = B + S where $B \subseteq \alpha$ and S is quasi-nilpotent. The answer to this is not known to us and, because of the nonadditivity of quasi-nilpotence, it is conceivable that it can be accomplished even when $\alpha\subseteq S$.

Lemma 6. Suppose $\mathfrak B$ is the algebra of all bounded operators on $\mathfrak R$ and the point spectrum of A is empty. Then $\mathfrak A\subseteq \mathfrak S$.

PROOF. Let $g = \alpha \cap S$. Then g is an ideal of α and thus it is sufficient to prove that $1 \in S$. Because of [5, Theorem 3.3.1] we may assume that α is the algebra of all bounded measurable functions in $L^2([0, 1])$ and E_{λ} is multiplication by the characteristic function of the interval $[0, \lambda)$.

Let \mathcal{E} be the set of all operators on L^2 which are finite sums $\sum f_i \otimes g_i$ where f_i , $g_i \in L^2$ and $(f_i \otimes g_i)h = (h, g_i)f_i$. By making use of the canonical trace on \mathcal{E} , \mathcal{E} can be identified with the set of all weakly continuous linear functionals on \mathcal{E} [1, p. 388]. Let $\mathcal{E} = \{T: T \in \mathcal{E}, Tr(TX) = 0 \}$ for all $X \in \mathcal{E}$. Since \mathcal{E} is weakly closed, $\mathcal{E} = \{X: Tr(TX) = 0 \}$ for all $X \in \mathcal{E}$. Thus $1 \in \mathcal{E}$ if and only if Tr(T) = 0 for all $T \in \mathcal{E}$.

Suppose $T \in \emptyset$. For $f, g \in L^2$, Lemma 5 implies $(1 - E_{\lambda})f \otimes gE_{\lambda} \in S$ so that $\operatorname{Tr}(T(1 - E_{\lambda})f \otimes gE_{\lambda}) = 0$ and this implies $(E_{\lambda}T(1 - E_{\lambda})f, g) = 0$. Since f, g were arbitrary this shows that $E_{\lambda}T(1 - E_{\lambda}) = 0$ for any λ and thus $T \in \mathfrak{I}$. Since T is of trace class there is a function K in L^2 of the unit square such that $Tf(x) = \int K(x, y)f(y) \, dy$ for $f \in L^2$. Since $T \in \mathfrak{I}$ it is easy to see that K is of Volterra type, i.e., K(x, y) = 0 for y > x. A well-known theorem of integral equations [6, pp. 10-11] implies T is quasi-nilpotent and, since the range of T is finite-dimensional, this means T is nilpotent so that $\operatorname{Tr}(T) = 0$.

THEOREM 4. (1) If \otimes is a factor of Type II, $\otimes \cap S = \{0\}$.

- (2) Suppose $\mathfrak B$ is of Type I_∞ . Let M be the set of characteristic values of A and E = E([0, 1] M). Then $\mathfrak A \cap S = E\mathfrak A$. Thus $\mathfrak A \cap S = \{0\}$ if and only if A has pure point spectrum.
- PROOF. (1) We consider only the case when $\mathfrak B$ is finite. The infinite case can be deduced from this or obtained by a refinement of the argument given here. For X, $Y \in \mathfrak B$ let $(X, Y) = \operatorname{Tr}(XY^*)$ where Tr is the canonical trace on $\mathfrak B$. Then $\mathfrak B$ becomes a pre-Hilbert space. Since $\mathfrak C \subseteq S(\{0\})$ the assertion follows from a more general result: If M and N are disjoint Borel sets then (S(M), S(N)) = 0. By using approximations with compact subsets we may assume both M and N are compact. Then M-N is a compact set bounded away from zero and $S(M)S(N)^*\subseteq S(M-N)$. Since S(M-N) is spanned by nilpotent elements of $\mathfrak B$ it is sufficient to prove that any nilpotent $X \in \mathfrak B$ has trace zero. However, this is a consequence of a result proved in [2, p. 108] where it is shown that $\operatorname{Tr}(X)$ belongs to the convex hull of the spectrum of X.
- (2) Let $g = S \cap \alpha$. Then g is a weakly closed ideal of α . Suppose μ is a characteristic value for A and $P = E(\{\mu\})$. Then P is a minimal projection in α and thus either $P \in g$ or Pg = 0. Choose $\lambda > 0$ and $S \in S([\lambda, 1])$. Then Theorem 2 implies $SP(\Im) \subseteq E(\{\mu\} + [\lambda, 1])(\Im)$ so that Pv = v implies (Sv, Pv) = 0. But then $||(P S)v||^2 = ||v||^2 + ||Sv||^2 \ge ||v||^2$. Since λ was arbitrary this shows that P is not contained in the strong closure of S_0 . However, the result of [1, Note 1] shows that the strong and weak closures coincide and thus $P \in S$. Then Pg = 0 and it follows that $g \subseteq E\alpha$. Let $\Im' = E\Im E$. Then \Im' is a maximal hyperreducible triangular algebra of operators with diagonal $E\alpha$ on the Hilbert space $E\Re$. Since EA has no point spectrum on $E\Re$, Lemma 6 implies $E\alpha \subseteq ESE$ and hence $E\alpha \subseteq g$.

References

- 1. J. Dixmier, Les fonctionnelles linéaires sur l'ensemble des opérateurs bornés d'un espace de Hilbert, Ann. of Math. (2) 51 (1950), 387-408.
- 2. ____, Les algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1957.
 - 3. P. Halmos, Introduction to Hilbert space, Chelsea, New York, 1951.
- 4. R. Kadison and I. Singer, Extensions of pure states, Amer. J. Math. 81 (1959), 383-400
 - 5. ——, Triangular operator algebras, Amer. J. Math. 82 (1960), 227-259.
 - 6. F. Tricomi, Integral equations, Interscience, New York, 1957.

MACALESTER COLLEGE