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Introduction. In [5] Kadison and Singer have defined triangular

algebras of operators on a Hilbert space and have investigated a num-

ber of their properties with the major emphasis on classification and

examples. It is the purpose of this paper to give a new construction

for the hyperreducible algebras which gives some additional insight

into their structure. In particular, Theorem 3 shows that any algebra

3 of this form with diagonal ft can be written 3= ft+S, where S is the

weak closure of an increasing sequence of weakly closed nilpotent

ideals.

1. Notation and spectral theory, a will denote a fixed maximal

abelian self-adjoint subalgebra of a factor (B acting on a separable

Hilbert space 3C. For J6(B, define the operators Lx, Rx, Dx on (B

by the equations LXY=XY, RXY=YX, and DXY = XY-YX lor

F£(B. If the uniform topology is used on 03, each of these operators

is bounded and \\LX\\ =||Pi|| =||a||. Furthermore, Dx is a derivation

on <&. Let =C and (R denote the sets of LA, Ra, A E ft, respectively. Then

£ and (R are commutative Banach algebras and each is isomorphic to

ft under the natural mappings. Let C be the uniformly closed algebra

of operators on B generated by £U(R. Thus C contains the identity

operator.

We let A denote the spectrum of ft, i.e., the set of all homomor-

phisms of ft onto the complex numbers. A is a compact Hausdorff

space under the Gel'fand topology and ft, £, and (R all may be identi-

fied with the continuous complex-valued functions on A. If we let T

denote the spectrum of 6 then T is also compact and Hausdorff in the

Gel'fand topology.

Theorem 1. Suppose y ET and a, ß are the restrictions of y to £ and

(R, respectively. Then the mapping y—vy' = (a, ß) is a homeomorphism

of T onto the product space AXA.

For the proof we need two lemmas.

Lemma 1. For X, YE®>, LXRV = 0 implies X = 0 or F=0.

Proof. Let é= {z:LzRy = 0}. Then XEâ and if is a weakly closed
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two-sided ideal of (B so that either â= {o} or ¿ = (S>. In the first case

X = 0 and in the second F=0.

Lemma 2. Let 60 be the set of all finite linear combinations of the form

Y^íEeíRfí where Ei and £,- are projections in Q, and either £^£,- = 0 or

FiFj = 0 for i^j. Then Qo is a dense subalgebra of G.

Proof. The usual operations with projections show fairly directly

that Go is a subalgebra. In fact, with the obvious modifications, the

proof is like that showing that the set of all finite linear combinations

of characteristic functions of sub-rectangles (with sides parallel to the

axes) of a given planar rectangle forms an algebra. From the spectral

theorem applied to A and B it is easy to see that each LARB (A, BE&)

can be approximated uniformly by elements of C0 and thus C0 is dense

in e.
Proof of Theorem 1. For y ET and an element of C0, y( Y^eíRpÍ)

— Ya(E,)ß(Fi). Since Co is uniformly dense in Q this means that y

is determined uniquely by a and ß and thus the correspondence de-

fined on r is one-one. If {y,} is a directed sequence in T converging

to y and y¡ =(a¡, ßj), y'=(a, ß) then yj(A)-*y(A) for all AEQ, so

that {a,} and {ßj} converge to a and ß, respectively. Thus y'j-^y'

and the mapping is continuous. Since T is compact, the image is

compact and it only remains to prove that this image is all of AXA.

Thus suppose (a, ß)EAXA and   C= XX-L^i^eCo. Let y(C)
- Y^MEi)ß(Fi). Il y(C) ^0 there is a j with «(£,-) = /3(£,-) = 1. For
Í9¿j either £,£, = 0 or £¡£,- = 0 so that, in any case, a(Ei)ß(F{)=0

and hence y(C) =X,. Since LejRfj^O, there is an X£(B with ||X\\ = 1

and EjXFj = X. Necessarily £,X£,= 0 for i^j and thus C(X)=X,X

so that ||C|| §: |X,-| = |t(C)| • The mapping C—*y(C) will be linear on

Co and the argument above shows that it is well-defined and norm-

decreasing. 7 is clearly multiplicative on C0 and thus can be extended

uniquely to all of 6 giving a homomorphism of 6 also denoted by y.

Since y (Li) = 1, y is nontrivial and thus belongs to T. Since y' = (a, ß)

the proof is complete.

2. Construction of triangular algebras.

Definitions. Because of the separability assumption there exists

a self-adjoint element A E Ct such that every element of a is a

bounded measurable function of A. Thus &= {X: DAX = 0}. We

choose a fixed A with these properties and, without any significant

loss of generality, assume that the spectrum of A lies in the interval

[0, 1] and contains both end points. For y= (a, ß)ET letf(y) =y(DA)

= a(A)—ß(A). Thus, relative to C, the spectrum of DA is given by
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the range of/, a subset of [ —1, 1]. Since the range of/ is real and

compact, it does not separate the plane, and the general theory of

Banach algebras implies that the spectrum of DA, relative to the

algebra of all bounded operators on 03, is also given by the range of/.

For real X and e>0, let 5(X, e) denote the linear manifold consisting

of all XE<$> for which there is a constant Kx such that |[(.Da—X)nA||

S*nKx lor n = l, 2, • • • . Then 5(X, e) is invariant under all bounded

operators on 03 which commute with Da- For a compact subset M

of the real numbers, let S(M, e) be the closure in the weak operator

topology of 03 of the manifold spanned by {S(h, e):~\EM} and let

S(M) = ne>o S(M, e). Finally, for any Borel set A of the real numbers,

let S(N) be the weak closure of the manifold spanned by {S(M) : M

ÇA, M compact}. Thus 5(A) is invariant under all bounded oper-

ators on 03 commuting with DA- In particular, ftÇ5({0|).

Lemma 3. Suppose M is a real Borel set and |X| >1 for all \EM.

Then S(M) = {0}.

Proof. The proof reduces to the case when M is compact. The

hypothesis implies M lies within the resolvent set for DA. Thus for

yEM, DA—\I has a bounded inverse B(\) and the mapping X—>5(X)

is holomorphic on an open set containing M. This implies the exist-

ence of a constant K such that ||-B(X)|| SK for all \EM. Choose e

withO<e<K-\For\EM and XESÇK, e),\\x\\=\\BQ,y(DA-X)nX\\
S(Ke)nKx lor all ra>0 and thus ||X|| =0. Thus S(M, e) = {o} and

the same is true for S(M).

Lemma 4. For Borel sets M, N; S(M)S(N)QS(M+N) and S(M)*
= S(-M).

Proof. Suppose €>0 and XES(\, e), YES(p, e). Since DA is a

derivation,

\\(DA-(\ + ß)yXY\\ =

S E CminKxe~mKY = (2e)»KxKY.
n

Thus S(\, e)S(ß, e)C5(X-r-M- 2e).

Suppose now that M, N are compact, "KiEM, juyEA, XiESÇKi, e),

Y3ES(u3, e), and X= E^¿. Y= Y.Y,. Then 17= EÉ^¿^ so that
XYES(M+N, 2e). The sets of X and Y obtained in this way are

weakly dense in S(M, e) and S(N, e), respectively. Since, in the weak

operator topology, multiplication is continuous in each factor sepa-

rately, we then have S(M)S(N)QS(M,  e)S(N,  e)QS(M+N, 2e).

E (cm((DA - \yx)(DA - uy-™Y)
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Since e was arbitrary, this implies S(M)S(N) ÇZS(M+N) lor compact

M and N. The general case follows immediately from this.

Induction on n shows that ((DA-X)"X)*= (-l)n((DA+X)nX*)

lor real X and Z£(B. Thus S(X, e)* = S( — X, e). A proof like that used

above shows that S(M)* = S(-M).

Corollary. For each X>0, S([X, l]) is a weakly closed nilpotent

subalgebra of (S>. In fact, if n is any integer with n\>l, the product of

any n factors taken from S( [X, 1 ]) is zero.

Definitions. Let S0 = Ux>0 S([X, l]) and S = 5((0, 1]). Let 3 be the

algebraic sum of a and S. By virtue of Lemma 4 the following asser-

tions are evident:

(1) 3 is a subalgebra of (B.

(2) So and S are two-sided ideals of 3.

(3) Every element of S0 is nilpotent.

(4) S is the weak closure of Sa-

lt will be shown below that 3 is a maximal hyperreducible triangu-

lar algebra with diagonal a.

Let £ be the real spectral measure associated with A and let

£x = £((— co, X)). Then £x = sup £M where p<\ so that £o = 0. Also

£>. = 1 for X > 1 and the set of £>, generates a as a von Neumann

algebra.

For X real and e>0 let 3:(X, e) be the set of vectors mE3C such that

II(A — X)"w|| ^tnKu for some constant Ku and n= 1, 2, ■ • ■ . If we let

3(N, e) be the closed subspace spanned by {íF(X, e):X£2V} then it

follows from a result in [3, pp. 66-69] that if N is compact, the range

of £(A0 equals 3(N) = De>0 5(N, «). For a Borel set N we use &(N) to

denote the range of the projection E(N).

Theorem 2. For Borel sets M and N, S(M)&(N)Cl&(M+N).

Proof. Suppose X, p are real and e>0. Choose uE'S(p, e) and

XES(\, e). Then

\\(A - (X + iO)»X«||      \\((DA -X) + (RA - p))"Xu\\

Y Cm(DA - xy~mX(A - p)mu
n

ú Y C^Kxe^Ku = (2e)"KxKu.
n

Thus S(X, e)$(p, e)Q5(\ + p, 2e).

An argument like that used in the proof of Lemma 4 can now be

used to prove the assertion of the theorem when M and N are com-
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pact. By using approximations with compact subsets the general as-

sertion follows from this.

Corollary. For any real X the range of 1—E\ is invariant under 3.

Lemma 5. (1) Suppose Q^p<X^l. Then (l-£x)(B£^ÇS0.

(2)  For anyX, (l-£x)(B£xÇs.

Proof. (1) Suppose e>0. Let X0 = X and choose Xi, • • • , X„ with

X„>1 such that each of the intervals [X0, Xi), • • -, [X„_i, X„) has

length less than e. Let £< = £([X¿_i, X¿)), i=l, • • • , n. Then 1 —£x

= Y^i- Similarly we can partition [0, p) into m disjoint intervals of

length less than e and express £,, as the sum of m mutually orthogonal

projections £,-£ß. Choose arbitrary points aiy ßj in the ith and jih

intervals of the partitions of [X0, X„) and [O, p), respectively. Then

ca-ßj^X-p>0.
For XE<S>, (1—£x)X£/i= YYEiXFj. For a positive integer k,

\\(DA - (ai - ßWEiXFjW = \\((LA - ad - (RA - ßj))kEiXF,\\

Ú Y CP\\(A - atyE\\ \\X\\ \\(A - /3y)*-*£y||
k

^ {2e)k\\x\\.

Thus EiXFjES(ai-ßj, 2e)QS([X-p, l])ÇS0.
(2) For any X and O^X^l, (1—£x)X£x is a weak limit of oper-

ators of the form (1 — E-^XE^ where p <X, hence lies in S.

Theorem 3. 3 is a maximal hyperreducible triangular algebra with

diagonal a. Moreover, every algebra of this type (acting on a separable

space) is obtained by a construction like that given above.

Proof. Let 3i be the set of all XE& which leave the range of 1 — £x

invariant for all X. It is shown in [5, Theorem 3.1.1 ] that 3X is a maxi-

mal hyperreducible triangular algebra and we have proved that

3Ç31# It remains to prove 3iÇ3. For the proof we use the diagonaliza-

tion process developed by von Neumann and generalized by Kadison

and Singer in [4, pp. 386-387].

Let {X„} be a countable dense subset of [0, 1] and £„ = £x„. Then

{£„}U{l| generates a as a von Neumann algebra. Define the

projection P„ on (B by Pn(X)=EnXEn + (l-En)X(l-En). Then

||P„P0||g||x|| and Pn leaves 3i invariant. For XE3i, X = Pn(X)

+ (l — E„)XEn and the latter term is in S by virtue of Lemma 5. Let

X0 = X and X„=P„(J„_i) for »gtl. Then -X"„£3i and, by induction

on n, we have X = X„ + Sn where 5„GS. Because of the compactness

of the unit sphere of (B in the weak topology a subsequence {Xnil}
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converges weakly to an element BE03 and thus {S„k} converges

weakly to some SES. Since B will commute with all En, BE& and

hence X = B+S lies in 3 so that 3iÇ3.

If 3 is any maximal hyperreducible triangular algebra with diagonal

ft, a modification of the proof of Theorem 3.3.1 in [5] shows that it is

possible to construct a spectral family {E\: O^X^l} of projections

in ft such that 3 is the set of all XE03 with E^X = EXXE^ for all X. If
we define A by A = fkdE\, then ft = {X : DAX = 0}, and if we use this

A in the construction, the result will be 3, as shown in the preceding

part of the proof.

3. Determination of ftP\S.

Remark. In connection with the structure of 3 the question arises

as to necessary conditions in order that the sum ft+S be direct. A

complete solution is given here for the case when 03 is of Type I or II.

A question which seems to be related to this arises regarding the pos-

sibility of expressing each A £3 as X = B + S where BE& and 5 is

quasi-nilpotent. The answer to this is not known to us and, because

of the nonadditivity of quasi-nilpotence, it is conceivable that it can

be accomplished even when ftÇs.

Lemma 6. Suppose 03 is the algebra of all bounded operators on 3C

and the point spectrum of A is empty. Then ftÇs.

Proof. Let ê = ftf^S. Then â is an ideal of ft and thus it is sufficient

to prove that 1£S. Because of [5, Theorem 3.3.1] we may assume

that ft is the algebra of all bounded measurable functions in L2( [0, 1 ])

and E\ is multiplication by the characteristic function of the interval

[0, X).
Let £ be the set of all operators on L2 which are finite sums E/«®g'

where/¿, giEL2 and (fi®g¡)h=(h, g¡)/s-. By making use of the canon-

ical trace on 03, 8 can be identified with the set of all weakly continu-

ous linear functionals on 03 [l, p. 388]. Let0>= { T: TES, Tr(TX)=0

for all A£s}. Since S is weakly closed, S= {X:Tr(rA)=0 for all

TE(?}. Thus 1GS if and only if Tr(r) =0 for all TE<?.
Suppose TE<P. For/, gEL2, Lemma 5 implies (1— E\)f®gE\ES

so that Tr(r(l-£x)/®g£x)=0 and this implies (ExT(l-EJf, g)

= 0. Since/, g were arbitrary this shows that E\T(l — E->) = 0 for any

X and thus T£3. Since T is of trace class there is a function K in L2

of the unit square such that Tf(x) = fK(x, y)f(y) dy lor f EL2. Since

TEZ it is easy to see that K is of Volterra type, i.e., K(x, y) = 0 for

y>x. A well-known theorem of integral equations [6, pp. 10-11]

implies T is quasi-nilpotent and, since the range of T is finite-dimen-

sional, this means T is nilpotent so that Tr(T) = 0.
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Theorem 4. (1) // 03 is a factor of Type II, aHS= {o}.
(2) Suppose 03 is of Type Ix. Let M be the set of characteristic values

of A andE = E([0, l]-M). Then aHS = £a. Thus aP\S= {o} if and
only if A has pure point spectrum.

Proof. (1) We consider only the case when 03 is finite. The infinite

case can be deduced from this or obtained by a refinement of the

argument given here. For X, F£03 let (X, Y) =Tr(AF*) where Tr is

the canonical trace on 03. Then 03 becomes a pre-Hilbert space. Since

aÇ5({o|) the assertion follows from a more general result: If M

and A are disjoint Borel sets then (S(M), 5(A)) =0. By using ap-

proximations with compact subsets we may assume both M and A

are compact. Then M — N is a compact set bounded away from zero

and S(M)S(N)*CZS(M-N). Since S(M-N) is spanned by nilpotent

elements of 03 it is sufficient to prove that any nilpotent A£03 has

trace zero. However, this is a consequence of a result proved in [2,

p. 108] where it is shown that Tr(A) belongs to the convex hull of

the spectrum of X.

(2) Let ä = $r\n. Then â is a weakly closed ideal of a. Suppose p

is a characteristic value for A and P = E({p.}). Then P is a minimal

projection in a and thus either PEä or PS = 0. Choose X>0 and

SeS([X, 1]). Then Theorem 2 implies SP(3C)QE({ß} + [X, l])(3C)
so that Pv = v implies (Sv, Pv) = 0. But then ||(P-5>||2 = ||î/||2 + ||5î|2

=t \\v\\2. Since X was arbitrary this shows that P is not contained in the

strong closure of S0. However, the result of [l, Note 1 ] shows that the

strong and weak closures coincide and thus P£s. Then Pa = 0 and

it follows that äC-EOi. Let 3' = £3£. Then 3' is a maximal hyper-

reducible triangular algebra of operators with diagonal ECL on the

Hilbert space E3C. Since EA has no point spectrum on £3C, Lemma 6

implies £aÇ£8£ and hence E&Qá.
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