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In the study of the zeros of extremal polynomials, Fekete and von

Neumann indicated [l] that the derivative of an arbitrary poly-

nomial p(z)=zn + ■ • ■ with simple zeros has extremal properties,

and indeed is the polynomial nzn~l+ • ■ ■ which has the least suita-

bly weighted Tchebycheff norm on the point set consisting of the

zeros of £(2). The object of the present note is to show that the zeros

of the derivative of an arbitrary rational function are the zeros of a

polynomial possessing analogous extremal properties.

Theorem 1. Let R(z) = YÍ™ (z-a,)m>- JI" (z-ßi)~ni be a rational

function of z whose distinct finite zeros are the a,- of respective multi-

plicities m¡ and whose distinct finite poles are the /?,- of respective multi-

plicities n¡. Then the finite zeros of the derivative R'(z) distinct from the

cLj are the zeros of the extremal polynomial P(z)=Nzm+n~1 + ■ ■ ■ , N

= Ymi ~ Ynj, required to assume the prescribed values P(a¡) = m,«'(ay)

in the points a¡ and having minimum weighted Tchebycheff norm

max \P(ßi)/n}o}'(ß,)\   on the set B: [ßi, ß2, • • • , ßn}, where a(z)

- IE («-«/)• IB («-ft).
The remark of Fekete and von Neumann was later extended [2]

to include the case that p(z) has multiple zeros, and we consider in

Theorem 1 and below the analogue of the extension. In the proof of

Theorem 1 we omit the case m = 0 and the case w = 0, essentially in-

cluded in [l] and [2]; indeed an obvious modification of the present

proof also includes these cases.

We identify the logarithmic derivative of R(z) :

R'(z)   _  »       m¡ "       m

R(z) 1    z — as 1    z — ßj

after multiplication by w(z), with the Lagrange interpolation formula

for P(z) and the point set consisting of the zeros of w(z) :

™ P(a¡) » POS,-)
(2)        P(z) = „(s) Y    „   w , + «w Y

1    cü'(a,-)(* - «3) 1    w'G8y)(í - ßi)

Presented to the Society, March 4, 1963; received by the editors May 1, 1963.

1 Research supported (in part) by the Air Force Office of Scientific Research.

753



754 J. L. WALSH AND O. SHISHA [October

where P(z) is the unique polynomial As'""1""-1-!- • • •  which takes on

the values P(a3) in the points a, and the values P(ß3) in the points ß3,

(3) P(a3) = m3J(a3), P(ß3) =  - «yiß,).

It may be noted that any polynomial Q(z) of the form

Nzm+n~l+ ■ ■ ■ , which takes the prescribed values m3co'(aj) in the

points a3, can be written

A     m j A Q(ßj)
(4) Q(z) m „(«) E —— + "(*) E     „^ „, >

i    z - a3 i    u'(ßj)(z - ßj)

subject to the condition

(5) N-±mj=-±nj=±^-       (<0).
i i i   u (Pi)

For the Tchebycheff norm we introduce positive weights on B:

(6) W = ^) = l/»,|«'03y)|,

and in Theorem 1 the Q(ß3) are to be chosen so that (j= 1, 2, • • • , n)

(7) max mí | (?(&) |   = max
«y I » (ft) I

is as small as possible, subject to (5).

It will be convenient to have

Lemma 1. Given the weights v3 (>0); the minimum of max Vj\\,\ ,

j= 1, 2, • ■ • , n, subject to the condition EXy = h, where A (>0) is pre-

assigned and the (variable) Xy are to be determined, is M0 = h/ ^Z(l/v3),

given by vjkj = M0 for all j.

We must have A, =£ 0, for otherwise we may set X/ = h | Xy| / EIX* |,

whence EV = ^> IV I <IM f°r every j unless Xy = 0. With Xy^O
and M o = max yyXy, we have X<^Afn /Al/vî), so either we have

Vj\j = Mo lor every j, Mü = h/^Z(l/v¡), or for some j we haveyyXy<Moi

Mo>h/¿Z(l/vj). Minimum M0 occurs for vfk3 = h/'^Z(l/vk) for every

j. Of course multiplication of all v, by a positive constant does not

alter the extremal Xy.

In the situation of Theorem 1 we set Xy= —P(ß3)/u'(ß3), v}— l/n¡,

u3=l/n3\u'(ßj)\, whence juy|P(|8y)| = »'y|Xy|. When the members of

(7) are a minimum, each of the n elements v¡hj should by Lemma 1

be unity; this condition is both necessary and sufficient that (7) be a

minimum, so the unique extremal polynomial is P(z) as defined by

(2) and (3) ; Theorem 1 is established. The prescribed values of the
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Tchebycheff polynomial in the a, are P(a,) = mjCo'(a¡), and the pre-

scribed weights in the points ßj are given by (6). The extremal values

in the ßj are P(ß,) = -«,-w'(j8,-).

Naturally the roles of the a¡ and the ßj may be reversed in this

theorem ; we may prescribe values of the polynomial P(z) in the ßj

and determine the least norm on {a,}.

The proof of Theorem 1 is naturally related to the proofs given in

[l] and [2], and is also related to the study of restricted infra-

polynomials in [5]. The present emphasis is on restricted extremal

polynomials, and the direct use of Lagrange's formula as in (2) seems

here more favorable than the methods of [S].

If it is desired to describe the extremal properties not of the poly-

nomial P(z) defined in Theorem 1, but of a polynomial whose zeros

are all the finite zeros of R'(z) and with the same multiplicities, we

can no longer use the simple Lagrange formula (2) ; however, it is

sufficient to set

m

(8) Pi(z) = ui(z)-P(z),       ui(z) «II(*- ai)"-1-
1

In the neighborhood of a,- we have the prescription

(9) Pi(z) m m¡(z - a,)m>-1 + Ej(z),

where E¡ is a polynomial with the factor (z—a,)m>. Moreover for

Pi(s) we prescribe in the points ßj the new weights

(10) pj  = »/ I «iGSy) I .

Then Pi(2) is a polynomial NzM + • • ■ , M — Ymj+n — l, whose pre-

scribed values in the simple zeros a¡ of R(z) are given by Pi(ctj)

= Ui(a.j)-P(cij), and whose behavior in the multiple zeros of R(z) is

indicated by (9); consequently Pi(z) is the unique thus restricted

polynomial of least Tchebycheff norm on B with weights u¡ as in

(10).
Theorem 1 expresses the extremal polynomial P(2) =u(z)R'(z)/R(z)

as a restricted (i.e., P(z) = Nzm+n~1 + • • • with P(a])=mjU)'(a,))

polynomial of least Tchebycheff norm on B. For every p ( ̂  1) and

with suitably chosen weights in the ßj, this extremal Tchebycheff poly-

nomial is also a similarly restricted polynomial of least pth power norm

on B, namely minimizing the norm

A       1 P(ßj) V
h (%k(ß)i)p-1 ;
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the extremal polynomial is unique for p> 1. The proof of this state-

ment is closely analogous to the proof in [3, p. 373], and details are

left to the reader.

The remark of Fekete and von Neumann already mentioned is

especially appropriate in the study of the geometry of zeros, for (as

they indicate) the classical theorem of Lucas asserting that the zeros

of p'(z) lie in the convex hull of the zeros of p(z) follows from the

theorem of Fejér that the zeros of a polynomial of minimum norm

(indeed, of any infrapolynomial) on a point set lie in the convex hull

of that set—assuming the set to be sufficiently numerous. Theorem 1

enables one similarly to prove Bôcher's theorem (if two disjoint cir-

cular regions contain respectively the zeros and poles of a rational

function they contain all its finite critical points) from results on re-

stricted extremal polynomials, and similarly to prove various other

propositions concerning zeros. Compare Theorem 3 of [5].

Here several related remarks are appropriate.

Io. If a rational function can be written in the form

(11)    E —-E —'— >      a, > 0, b, > 0, X>y = Da,,
1      Z - ay i      Z - ß3

and if two disjoint circular regions contain respectively the a3 and ß3,

then these regions contain all finite zeros of (11)—the proof is essen-

tially that of Bôcher's theorem [4, §4.2]. If we have (11) except that

now y,a,- = iU5^ ̂Zbj = v, and if the a3 lie in the disk \z — ao\ Sri and

the ß, in the disk \z-ß0\ úr2, then [4, §4.2.4] all finite zeros of (11)

exterior to those disks lie in the disk

ßßo — vao
Z-

u — v

pr2 + vri

Numerous further results follow at once as in [4, Chapters IV, V],

for instance if the a3 and ß3- are real, or if (11) admits other sym-

metries.

2°. If we replace (11) by

(12) E——>        a3>0,
1      3 — ay

various results can be established as in [4, Chapters I-III], including

for instance the analogue of Lucas's theorem, that all zeros of (12)

lie in the convex hull of the a¡.

3°. If we consider (generalization of (11))
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n ¿.

+  Y -'— ' OJ > 0, bj > 0,   | c |   =1,
1     Z - ßj

and if the a, and ß,- lie in the respective disks \z — a0| áfii |2 —/30|

ár2, then all zeros of (13) exterior to those disks lie in the disk (pro-

vided eu+VT^O)

tpßo + rao
z-

ep + v

pTi + vri v v
S -j-;-r '        P = 2L,ai, " = ¿A-

«M + H

The significance of (11), (12), and (13), when their product with

co(z) is identified with the general Lagrange interpolation formula as

in the second member of (2), is that in (11) and (12) we have

arg P(a,)= arg u'(a¡); in (11) we have arg P(ß,) =arg[ — w'(/3,)]; in

(13) we have arg P(a3) = arg [eco'(ay)] and arg P(ß}) =arg co'(j3,-).

4°. Certain extremal properties lead directly to functions of form

(11), (12), or (13); and conversely, each function of such a form

(after multiplication by co(z)) can be interpreted as a polynomial

characterized by suitable extremal properties, as in Theorem 1. If a

polynomial P(z) has the form (2) where ctj^ßk, if the numbers

P(a,-)/co'(ay) are all prescribed and positive, and if the numbers P(ßk)

are to be determined so that P(z) = Azm+n~1 + ■ - - where A is fixed

and A < 2P(o;y)/co'(o!y), and so that P(z) is a restricted infrapoly-

nomial (or more particularly a polynomial of least norm) on the set

B, then we must have P(ß1)/o}'(ßJ) <0 for every j, P(z)/u(z) is of

form (11), and Io applies. Compare here [5], where such infrapoly-

nomials are considered in some detail; compare also [6]. However, if

the P(otj)/a'(aj) are all prescribed and positive, and if A is fixed with

A > YjE(a,)/d>'(a,), then for the infrapolynomial P(z) of (2) we must

have P(ßj)/u'(ßj)>0 for every;, and P(z)/a(z) is of form (12); 2°

applies. If we have A = 53P(a,-)/«'(a,-), then for the infrapolynomial

we must have P(ß,) =0 for every j; P(z)/u(z) is of form (12) and 2°

applies. If P(z) has the form (2) where cxj^ßk, if the numbers P(a,)

= eajü)'(a¡) are prescribed and the P(aj)/o}'(a¡) all have the same

argument, and if the P(ß,) are to be determined so that P(z)

= (eju+j')2m+''-1-r- • • • , ep+v^0, v>0, is a restricted infrapoly-

nomial (or a polynomial of least norm) on B; then we must have

P(ßj)/u'(ßj)>0 for every j, and P(z)/u(z) is of form (13). Remark 3°

applies.

Beyond propositions 1°, 2°, and 3°, and identification of the poly-

nomials P(2) with restricted infrapolynomials, and conversely, there

can be proved results of a different nature (compare [S] and [ó])

especially concerning point sets and polynomials possessing various
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symmetries. Moreover the original functions need not be rational;

for instance in Theorem 1 the m¡ (>0) and n¡ (>0) need not be

rational.
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NONLINEAR DIFFERENTIAL EQUATIONS
WITH FORCING TERMS1

FRED BRAUER

1. In this paper, we shall study the solutions of a differential equa-

tion containing a linear term with constant coefficients, a nonlinear

term, and a forcing term depending only on the independent variable.

We shall attempt to compare these with solutions of the equation ob-

tained by neglecting the nonlinear term. This is a problem which fre-

quently arises in physical examples, where the linear equation is

solved and its solution is used to describe approximately the motion

governed by the nonlinear equation. We shall see that the solutions

of the two equations do behave similarly if the nonlinear term is small

enough. This does not settle the question by any means, as in practice

the nonlinear term is frequently not small enough for our result to be

applicable.
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