
ON THE NUMBER OF IRREDUCIBLE MODULAR
REPRESENTATIONS OF A FINITE GROUP

IRVING REINER1

1. Let A be a field of characteristic p, and let G be a finite group.

Denote by n the L.C.M. of the orders of the ¿-regular elements of G,

and let Ô be a primitive rath root of 1 over A. Each A-automorphism

of A(5) is determined by a map 5—>5' for some integer t, taken modulo

ra. The multiplicative group T of all such exponents t (mod ra) is iso-

morphic to the Galois group of A(5) over A.

Two ¿»-regular elements a, bEG are called K-conjugate if b' = x_1ax

lor some x£G and some tET. This defines an equivalence relation,

relative to which the ¿-regular elements of G are partitioned into p-

regular A-conjugacy classes.

The following is due to Berman [2].

Theorem. The number of irreducible K-representations of G equals

the number of p-regular K-conjugacy classes of G.

The purpose of this note is to present a simplified proof of Ber-

man's theorem by making systematic use of Brauer characters. Let

w denote a primitive rath root of 1 over the rational field Q. To each

A-representation F of G corresponds a Brauer character <b, defined

on the ¿-regular elements of G, as follows: For ¿-regular aEG, let the

characteristic roots of F(a) he oml, • • • , Sm«, and set

4>(a) = wml + ■ ■ ■ + or".

We refer the reader to [4] for the basic properties of Brauer char-

acters, as well as for the other results used below.

Now let Xi, • • • , X* be the Brauer characters of a full set of ir-

reducible representations of G in the algebraic closure of A. Then

Xi, • • • , Xt are linearly independent over Q(u>), that is, if cti, • • • , ak

EQ(o>) are such that Ea»A'(g) =0 f°r aH ¿-regular gEG, then each

a,= 0.

Finally, let U be a A-representation of a subgroup H of G, with

Brauer character \p. Then the Brauer character \p° of the induced A-

representation TJ° of G is given by

t°(x) = [G: /J]-1 ^(y-'xy),      xEG,
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where \p coincides with \p on H and vanishes outside of H. (See [3,

§25].)

2. Our proof of Berman's theorem depends on several straight-

forward lemmas.

Lemma 1. Let <pi, ■ ■ ■ , <p, be the Brauer characters of a full set of ir-

reducible K-representations Fx, • ■ ■ , F, of G. Then 4>i, • • • , <j>. are

linearly independent over Q(u>).

Proof. By [4, (70.24)], the field K(S) is a splitting field for G, and
so each <£,- is a sum (with non-negative integral coefficients) of the

Brauer characters Xi, • • • , X* introduced above. From [4, (29.6) and

(69.4)] it follows that for i?¿j, <f>¡ and <p¡ have no summands in com-

mon. Since the X's are linearly independent over Q(w), so are the <b's.

This completes the proof.

Lemma 2. Let cb be the Brauer character of a K-representation F of G.

If a, bEG are K-conjugate p-regular elements, then <b(a) =(p(b).

Proof. Let bt = x~1ax, xEG, tET. Then

F(x)^F(a)F(x) = (F(b)V,

so that F(a) and (F(b))1 have the same characteristic roots. But the

characteristic roots of (F(b))' are the /th powers of those of F(b).

Since each characteristic root of F(b) is a power of §, and since 6—>5!

is an automorphism of K(5) which leaves F(b) unchanged, we con-

clude that F(b) and (F(b))' have the same characteristic roots. The

lemma is thus established.

Lemma 3. Let a EG be a p-regular element of G of order m, and let

[a] denote the cyclic group it generates. Define 6 by

(m,       t G T,

lo,       tET.

Then 6 is a linear combination, with coefficients from Q(w), of Brauer

characters of K-representations of [a].

Proof. (Identical with the first paragraph of the proof of (42.5)

in [4]. See also Berman [l], [2].)

3. We now prove Berman's theorem. Let ai, ■ ■ ■ , ar be repre-

sentatives of the ^-regular if-conjugacy classes in G, and let <f>i, • • • ,

<bs be the Brauer characters of a full set of irreducible iC-representa-

tions of G. By Lemma 2, each <£,- is completely determined by the r-

tuple ((¡>i(ai), ■ ■ ■ , 4>i(ar)). By Lemma 1, these 5 r-tuples correspond-
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ing to </>!,••• , d>„ are linearly independent over Q(u>). Therefore

sSr.

On the other hand, for each a¿ we construct the function 0¿ defined

as in Lemma 3. Then öf, • ■ • , öf are linear combinations of d>i, • • • ,

<b, with coefficients from Q(u>). If we show that öf, • ■ • , öf are linearly

independent over Q(u>), it will follow that rSs, and we will be

finished.

Let us compute df(a3). We have

8i(a3) = [G-.H]'1 E Uy'^jy).
i/ec?

WhenjVi, this gives 0f(a,-)=O; for if y~1ajy = a{ lor some y£G and

some tET, then a; and a3 would be A-conjugate. On the other hand,

in the expression for 6f(a¡) the nonzero term 0¿(a¿) always occurs, so

that of (a,-) ̂  0. This completes the proof of the theorem.

We remark that the above proof is equally valid for p = 0.
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