ON THE NUMBER OF IRREDUCIBLE MODULAR REPRESENTATIONS OF A FINITE GROUP

IRVING REINER1

1. Let K be a field of characteristic p, and let G be a finite group. Denote by n the L.C.M. of the orders of the p-regular elements of G, and let δ be a primitive nth root of 1 over K. Each K-automorphism of $K(\delta)$ is determined by a map $\delta \rightarrow \delta^t$ for some integer t, taken modulo n. The multiplicative group T of all such exponents $t \pmod{n}$ is isomorphic to the Galois group of $K(\delta)$ over K.

Two p-regular elements $a, b \in G$ are called K-conjugate if $b^t = x^{-1}ax$ for some $x \in G$ and some $t \in T$. This defines an equivalence relation, relative to which the p-regular elements of G are partitioned into p-regular K-conjugacy classes.

The following is due to Berman [2].

THEOREM. The number of irreducible K-representations of G equals the number of p-regular K-conjugacy classes of G.

The purpose of this note is to present a simplified proof of Berman's theorem by making systematic use of Brauer characters. Let ω denote a primitive nth root of 1 over the rational field Q. To each K-representation F of G corresponds a Brauer character ϕ , defined on the p-regular elements of G, as follows: For p-regular $a \in G$, let the characteristic roots of F(a) be $\delta^{m_1}, \dots, \delta^{m_q}$, and set

$$\phi(a) = \omega^{m_1} + \cdots + \omega^{m_q}.$$

We refer the reader to [4] for the basic properties of Brauer characters, as well as for the other results used below.

Now let $\lambda_1, \dots, \lambda_k$ be the Brauer characters of a full set of irreducible representations of G in the algebraic closure of K. Then $\lambda_1, \dots, \lambda_k$ are linearly independent over $Q(\omega)$, that is, if $\alpha_1, \dots, \alpha_k \in Q(\omega)$ are such that $\sum \alpha_i \lambda_i(g) = 0$ for all p-regular $g \in G$, then each $\alpha_i = 0$.

Finally, let U be a K-representation of a subgroup H of G, with Brauer character ψ . Then the Brauer character ψ^g of the induced K-representation U^g of G is given by

$$\psi^{G}(x) = [G:H]^{-1} \sum_{y \in G} \psi(y^{-1}xy), \quad x \in G,$$

Received by the editors April 21, 1963.

¹ This research was supported by the Guggenheim Foundation and the Office of Naval Research.

where ψ coincides with ψ on H and vanishes outside of H. (See [3, §25].)

2. Our proof of Berman's theorem depends on several straightforward lemmas.

LEMMA 1. Let ϕ_1, \dots, ϕ_s be the Brauer characters of a full set of irreducible K-representations F_1, \dots, F_s of G. Then ϕ_1, \dots, ϕ_s are linearly independent over $Q(\omega)$.

PROOF. By [4, (70.24)], the field $K(\delta)$ is a splitting field for G, and so each ϕ_i is a sum (with non-negative integral coefficients) of the Brauer characters $\lambda_1, \dots, \lambda_k$ introduced above. From [4, (29.6) and (69.4)] it follows that for $i \neq j$, ϕ_i and ϕ_j have no summands in common. Since the λ 's are linearly independent over $Q(\omega)$, so are the ϕ 's. This completes the proof.

LEMMA 2. Let ϕ be the Brauer character of a K-representation F of G. If $a, b \in G$ are K-conjugate p-regular elements, then $\phi(a) = \phi(b)$.

PROOF. Let $b^t = x^{-1}ax$, $x \in G$, $t \in T$. Then

$$F(x)^{-1}F(a)F(x) = (F(b))^{t}$$

so that F(a) and $(F(b))^t$ have the same characteristic roots. But the characteristic roots of $(F(b))^t$ are the tth powers of those of F(b). Since each characteristic root of F(b) is a power of δ , and since $\delta \rightarrow \delta^t$ is an automorphism of $K(\delta)$ which leaves F(b) unchanged, we conclude that F(b) and $(F(b))^t$ have the same characteristic roots. The lemma is thus established.

Lemma 3. Let $a \in G$ be a p-regular element of G of order m, and let [a] denote the cyclic group it generates. Define θ by

$$\theta(a^t) = \begin{cases} m, & t \in T, \\ 0, & t \notin T. \end{cases}$$

Then θ is a linear combination, with coefficients from $Q(\omega)$, of Brauer characters of K-representations of [a].

PROOF. (Identical with the first paragraph of the proof of (42.5) in [4]. See also Berman [1], [2].)

3. We now prove Berman's theorem. Let a_1, \dots, a_r be representatives of the *p*-regular *K*-conjugacy classes in *G*, and let ϕ_1, \dots, ϕ_s be the Brauer characters of a full set of irreducible *K*-representations of *G*. By Lemma 2, each ϕ_i is completely determined by the *r*-tuple $(\phi_i(a_1), \dots, \phi_i(a_r))$. By Lemma 1, these *s r*-tuples correspond-

ing to ϕ_1, \dots, ϕ_s , are linearly independent over $Q(\omega)$. Therefore $s \le r$.

On the other hand, for each a_i we construct the function θ_i defined as in Lemma 3. Then $\theta_1^g, \dots, \theta_r^g$ are linear combinations of ϕ_1, \dots, ϕ_r with coefficients from $Q(\omega)$. If we show that $\theta_1^g, \dots, \theta_r^g$ are linearly independent over $Q(\omega)$, it will follow that $r \leq s$, and we will be finished.

Let us compute $\theta_i^{\mathcal{G}}(a_i)$. We have

$$\theta_i^G(a_j) = [G:H]^{-1} \sum_{y \in G} \dot{\theta}_i(y^{-1}a_jy).$$

When $j\neq i$, this gives $\theta_i^G(a_i)=0$; for if $y^{-1}a_iy=a_i^t$ for some $y\in G$ and some $t\in T$, then a_i and a_j would be K-conjugate. On the other hand, in the expression for $\theta_i^G(a_i)$ the nonzero term $\dot{\theta}_i(a_i)$ always occurs, so that $\theta_i^G(a_i)\neq 0$. This completes the proof of the theorem.

We remark that the above proof is equally valid for p = 0.

REFERENCES

- S. D. Berman, p-adic ring of characters, Dokl. Akad. Nauk SSSR 106 (1956), 583-586.
- 2. ——, The number of irreducible representations of a finite group over an arbitrary field, Dokl. Akad. Nauk SSSR 106 (1956), 767-769.
- 3. R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. 42 (1941), 556-590.
- 4. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Wiley, New York, 1962.

University of Illinois