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A function u = u(x), x=(xu • ■ • , xn), is said to have bounded

mean oscillation on a bounded cube C0 if u(x) is integrable over Co

and there is a constant K such that for every parallel subcube C, and

some constant ac, the inequality

/.
(1) I   | u(x) - ac\ dx ^ KRn

J c

holds, R being the edge length of C. Such functions have been in-

vestigated by John and Nirenberg [l]. Their result states that if

u(x) has bounded mean oscillation on C0 and satisfies (1) then the

function

¡x(a) = meas{ | u(x) — ac0\ >a}

("meas" means Lebesgue measure) satisfies

_n —ba/K.
m(o-) g BR0e

where R0 is the edge length of C0 and B, b are constants depending

only on n.

In this paper I show that if u(x) satisfies an inequality of the form

(1) with Rn replaced by Rn+e, e>0, then u is Holder continuous with

exponent e (this condition is of course also necessary for Holder con-

tinuity). Morrey's Lemma then follows as a simple corollary. The

method of proof is essentially the same as that of John and Nirenberg

and is based on the following decomposition lemma, a proof of which

can be found in their paper.

Lemma. Let u(x) be an integrable function on the bounded cube C0 and

let s be a positive number such that

(2) s^R-nf   \u(x.
J 17»

0 ] dx.

There then exists a denumerable set of open disjoint parallel subcubes

Ik (k = 1, 2, • ■ ■ ) such that

(i)  | u(x) | ^s a.e. in C0— Y* ^*>
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(ii) the average, uk, over Ik satisfies \uk\ ^2"s,

(iii)   ^Zk A"^s_1/c0| u(x) | dx (Rk = edge length of Ik).

Theorem. Let u = u(x) be an integrable function on a bounded cube

Co- Assume there exists a nondecreasing function K(R) and a constant e,

0 < e ̂  1, such that for every parallel subcube C and some constant ac

the inequality

(3) I   [ u(x) —
J r.

ac I dx á K(R)Rn+'

holds, R being the edge length of C. Then there is a function v(x) =u(x)

a.e. in Co, such that

(4) | v(x) - v(y) | ^ KiK( \ x - y \ ) \ x - y \'

holds for all points x, y in Co, with Ki depending only on e and n.

The function K(R) may tend to zero as R—»0 in which case v(x) is

better than Holder continuous.

Proof. If inequality (3) holds then it will also hold with K(R)

replaced by the constant K(R0). We call this constant K.

Since

I u(x)dx — acRn    S    I   | u(x)   —   ac \ dx,
I J c •! c

it follows that uc, the mean value of u(x) over C, satisfies  \uc — ac\

<KR*. Hence

(5) f | u(x)
J c.

ucldxg: 2KRn+t.

Let r = T(A; e; R0) he the class of all integrable functions u(x)

satisfying the condition (5) on some cube C0 of edge length R0. Let

u(<r) —p,(o-; K; e; R0) he defined by

(6) ix(v) =        sup       meas{ | u(x) — uc0\ >er}.
«in r(iC;e;Bo)

Now multiply both sides of (5) by an arbitrary positive constant

K' and set w(x) =K'u(x). It is clear that w satisfies

Lw(x) - wc I dx g 2KK'Rn+t

and therefore u(<r; K; t; R0) =u(aK'; KK'; e; R0). Substituting cr/K'

for <r in this equation, we get
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(7) p(o-,KK';e;Ro)=p(^/;K;t;Roy

Next, perform a similarity transformation y = (R'/R0)x which carries

the cube Co onto a cube C of edge length R', and set w(y)

= u((Ro/R')y). w(y) satisfies

j   I w(y) - wc\dy ¿2K(—/} Rn+t

for every parallel subcube C of C with edge length R. It easily fol-

lows thatM(<r; K(R0/R')'; e; R') = (R'/R0)nß(ff; K; e; R0). Substitut-

ing K(R'/Ro)' lor K gives

(8) p(o-, K; t; R') = (jjp (a; K (^\ ; e; R0\.

Let ff and s be arbitrary numbers such that

^ Rb~n I    I u(x) I dx.2-"o- ^ s

From the decomposition lemma we then have

meas{ I u(x) I   > a; x in Co}

(9)
^ 2 measj | u(x) — Uk\  > a — 2ns; x in Ik} ■

k

If we assume, as we may, that wco = 0, (9) then implies

jni>; JT; e; R0) áj^- 2»í; Jf; e; 22*).
A-

From (8) we then have

p(a; K; e; *„) ^ £ (^) m(<t - 2«s; k(^J'; IT; e; i?0)

and from (7) we further deduce

(io)     M(*;tf;«;.Ro) á e(^)"m((o- - 2»*) (0; *;«;*,,).

Statement (iii) in the decomposition lemma gives

(11) (—J   ̂  /'"if,        M = J?ó( f   I «(*) I dx)
. — i/n
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Using the fact that p. is nonincreasing in a, we then have from (10),

(11) and (iii) of the decomposition lemma

(12) u(o) ^ s~lRön I    | «(a;) | dx-p((a - 2"s)s'i"M).
J Co

Set <r = 2n+1i. Then (<r-2ns)selnM = sl!n-M/2-<r. Thus, if we set

í = ( — )     = 2n'e-i?0-n I    I u(x) I dx

we get

p(a) Ú 2-»"r(a).

Therefore /i = 0 for o- = 2nlc+n+1Ro~nfc0\u(x)\dx, or in other words

\u(x)-uCo\   è2nh+n+iK(Ro)Rl

a.e. in Co. Therefore

(13) |«(*)-«60|   ^ 2nh+n+3K(Ro)Ro

for almost all x and y in C0. Since C0 is an arbitrary cube and since

any two points x, y with |x — y\ =R can be inclosed in a parallel

subcube of edge length R the desired result follows from (13).

Corollary. Let u = u(x) have strong derivatives which are in Lp

(l^ip<x>) on a bounded cube CQ. Assume there is a nondecreasing

function K = K(R) and a constant e, 0<e^l, such that for every

parallel subcube C

(14) I   | grad u(x) \pdx Ú Kp(R)R^n-p)+pt
J c

holds, R being the edge length of C. Then there is a function v(x) =u(x)

a.e. in Co such that

(15) | v(x) - v(y) ]   g K2K( \ x - y \ ) \ x - y |«

holds for all points x, y in C0 and K2 depends only on e and n.

Proof. It is a simple matter to prove the Wirtinger inequality

(16) /| u(x) — uc I dx ^ K3R I   | grad u(x) \ dx,
c J c

with K3 depending only on n. Applying the Holder inequality to the

right side of (16) we get
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(17)        I   | u(x) - uc\ dx á K3R"+l-nl*(  I   | gradw(x) {'dx)

and the desired result follows from the previous theorem.

This paper has been written with the support of the Office of Naval

Research, under project Nonr 710 (16), NR-043-041.
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PHRAGMÉN-LINDELOF THEOREMS FOR SECOND
ORDER QUASI-LINEAR ELLIPTIC PARTIAL

DIFFERENTIAL EQUATIONS

JOHN O. HERZOG1

Phragmen-Lindelöf theorems for uniformly elliptic partial differ-

ential equations have been the subject of several papers in recent

years (see e.g. [3; 4; 6; 7; 8; 10]). Here we are concerned with the

Phragmen-Lindelöf theorem for second order quasi-linear elliptic

equations of the form

(1) L[z] » Y o»(x, P)*x,xj = f(x, z, p),

which need not be uniformly elliptic. The main result is Theorem 1

which roughly says that if u(x) is a subfunction with respect to (1)

in a domain D contained in a half space and if u(x) ^ 0 on the bound-

ary of D then either u(x) ^0 throughout D or the maximum of u(x)

on a sphere of radius r is of order not less than r"1 for some ?7>0.

Probably the most interesting feature of this theorem is that its

proof essentially depends only on the behavior of the functions

Unix, p) and/(x, z, p) for YPt = l- Forf=0 and dimension « = 2 it is

shown that 77 = 1.

Let D be an unbounded domain contained in a half space of n-

dimensional Euclidean space and let T be the domain in 2«-dimen-
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1 This paper is a portion of a doctoral thesis written under the supervision of Pro-

fessor Lloyd K. Jackson at the University of Nebraska.


