MEAN OSCILLATION OVER CUBES AND HÖLDER CONTINUITY

NORMAN G. MEYERS

A function u = u(x), $x = (x_1, \dots, x_n)$, is said to have bounded mean oscillation on a bounded cube C_0 if u(x) is integrable over C_0 and there is a constant K such that for every parallel subcube C, and some constant a_C , the inequality

$$(1) \qquad \int_{C} |u(x) - a_{C}| dx \leq KR^{n}$$

holds, R being the edge length of C. Such functions have been investigated by John and Nirenberg [1]. Their result states that if u(x) has bounded mean oscillation on C_0 and satisfies (1) then the function

$$\mu(\sigma) = \max\{ |u(x) - a_{C_0}| > \sigma \}$$

("meas" means Lebesgue measure) satisfies

$$\mu(\sigma) \leq BR_0^n e^{-b\sigma/K},$$

where R_0 is the edge length of C_0 and B, b are constants depending only on n.

In this paper I show that if u(x) satisfies an inequality of the form (1) with R^n replaced by $R^{n+\epsilon}$, $\epsilon > 0$, then u is Hölder continuous with exponent ϵ (this condition is of course also necessary for Hölder continuity). Morrey's Lemma then follows as a simple corollary. The method of proof is essentially the same as that of John and Nirenberg and is based on the following decomposition lemma, a proof of which can be found in their paper.

LEMMA. Let u(x) be an integrable function on the bounded cube C_0 and let s be a positive number such that

$$(2) s \geq R_0^{-n} \int_{C_0} |u(x)| dx.$$

There then exists a denumerable set of open disjoint parallel subcubes I_k $(k=1, 2, \cdots)$ such that

(i)
$$|u(x)| \leq s \text{ a.e. in } C_0 - \sum_k I_k$$
,

Received by the editors June 3, 1963.

(ii) the average, u_k , over I_k satisfies $|u_k| \leq 2^n s$,

(iii)
$$\sum_{k} R_{k}^{n} \leq s^{-1} \int_{C_{0}} |u(x)| dx$$
 $(R_{k} = edge \ length \ of \ I_{k}).$

THEOREM. Let u = u(x) be an integrable function on a bounded cube C_0 . Assume there exists a nondecreasing function K(R) and a constant ϵ , $0 < \epsilon \le 1$, such that for every parallel subcube C and some constant a_C the inequality

(3)
$$\int_{C} |u(x) - a_{C}| dx \leq K(R)R^{n+\epsilon}$$

holds, R being the edge length of C. Then there is a function v(x) = u(x) a.e. in C_0 , such that

holds for all points x, y in C_0 , with K_1 depending only on ϵ and n.

The function K(R) may tend to zero as $R\rightarrow 0$ in which case v(x) is better than Hölder continuous.

PROOF. If inequality (3) holds then it will also hold with K(R) replaced by the constant $K(R_0)$. We call this constant K.

Since

$$\left| \int_C u(x)dx - a_C R^n \right| \leq \int_C |u(x) - a_C| dx,$$

it follows that u_c , the mean value of u(x) over C, satisfies $|u_c - a_c| \le KR^{\epsilon}$. Hence

(5)
$$\int_{C} |u(x) - u_{C}| dx \leq 2KR^{n+\epsilon}.$$

Let $\Gamma = \Gamma(K; \epsilon; R_0)$ be the class of all integrable functions u(x) satisfying the condition (5) on some cube C_0 of edge length R_0 . Let $\mu(\sigma) = \mu(\sigma; K; \epsilon; R_0)$ be defined by

(6)
$$\mu(\sigma) = \sup_{u \text{ in } \Gamma(K; \epsilon; R_0)} \operatorname{meas} \{ | u(x) - u_{C_0} | > \sigma \}.$$

Now multiply both sides of (5) by an arbitrary positive constant K' and set w(x) = K'u(x). It is clear that w satisfies

$$\int_{C} |w(x) - w_{C}| dx \le 2KK'R^{n+\epsilon}$$

and therefore $\mu(\sigma; K; \epsilon; R_0) = \mu(\sigma K'; KK'; \epsilon; R_0)$. Substituting σ/K' for σ in this equation, we get

(7)
$$\mu(\sigma; KK'; \epsilon; R_0) = \mu\left(\frac{\sigma}{K'}; K; \epsilon; R_0\right).$$

Next, perform a similarity transformation $y = (R'/R_0)x$ which carries the cube C_0 onto a cube C' of edge length R', and set $w(y) = u((R_0/R')y)$. w(y) satisfies

$$\int_{C} |w(y) - w_{C}| dy \leq 2K \left(\frac{R_{0}}{R'}\right)^{\epsilon} R^{n+\epsilon}$$

for every parallel subcube C of C' with edge length R. It easily follows that $\mu(\sigma; K(R_0/R')^{\epsilon}; \epsilon; R') = (R'/R_0)^n \mu(\sigma; K; \epsilon; R_0)$. Substituting $K(R'/R_0)^{\epsilon}$ for K gives

(8)
$$\mu(\sigma; K; \epsilon; R') = \left(\frac{R'}{R_0}\right)^n \mu\left(\sigma; K\left(\frac{R'}{R_0}\right)^{\epsilon}; \epsilon; R_0\right).$$

Let σ and s be arbitrary numbers such that

$$2^{-n}\sigma \geq s \geq R_0^{-n} \int_{C_0} |u(x)| dx.$$

From the decomposition lemma we then have

(9)
$$\max\{ |u(x)| > \sigma; x \text{ in } C_0 \}$$

$$\leq \sum_{i} \max\{ |u(x) - u_k| > \sigma - 2^n s; x \text{ in } I_k \}.$$

If we assume, as we may, that $u_{C_0} = 0$, (9) then implies

$$\mu(\sigma; K; \epsilon; R_0) \leq \sum_{n} \mu(\sigma - 2^n s; K; \epsilon; R_k).$$

From (8) we then have

$$\mu(\sigma; K; \epsilon; R_0) \leq \sum_{k} \left(\frac{R_k}{R_0}\right)^n \mu\left(\sigma - 2^n s; K\left(\frac{R_k}{R_0}\right)^{\epsilon}; K; \epsilon; R_0\right)$$

and from (7) we further deduce

(10)
$$\mu(\sigma; K; \epsilon; R_0) \leq \sum_{k} \left(\frac{R_k}{R_0}\right)^n \mu\left((\sigma - 2^n s) \left(\frac{R_0}{R_k}\right)^{\epsilon}; K; \epsilon; R_0\right).$$

Statement (iii) in the decomposition lemma gives

(11)
$$\left(\frac{R_0}{R_k}\right)^{\epsilon} \geq s^{\epsilon/n}M, \qquad M = R_0^{\epsilon} \left(\int_{C_0} |u(x)| dx\right)^{-\epsilon/n}.$$

Using the fact that μ is nonincreasing in σ , we then have from (10), (11) and (iii) of the decomposition lemma

(12)
$$\mu(\sigma) \leq s^{-1}R_0^{-n} \int_{C_0} |u(x)| dx \cdot \mu((\sigma - 2^n s)s^{\epsilon/n}M).$$

Set $\sigma = 2^{n+1}s$. Then $(\sigma - 2^n s) s^{\epsilon/n} M = s^{\epsilon/n} \cdot M/2 \cdot \sigma$. Thus, if we set

$$s = \left(\frac{2}{M}\right)^{n/\epsilon} = 2^{n/\epsilon} \cdot R_0^{-n} \int_{C_0} |u(x)| dx$$

we get

$$\mu(\sigma) \leq 2^{-n/\epsilon}\mu(\sigma).$$

Therefore $\mu = 0$ for $\sigma = 2^{n/\epsilon + n + 1} R_0^{-n} \int_{C_0} |u(x)| dx$, or in other words

$$|u(x) - u_{C_0}| \leq 2^{n/\epsilon + n + 2} K(R_0) R_0^{\epsilon}$$

a.e. in C_0 . Therefore

$$|u(x) - u(y)| \leq 2^{n/\epsilon + n + 3} K(R_0) R_0^{\epsilon}$$

for almost all x and y in C_0 . Since C_0 is an arbitrary cube and since any two points x, y with |x-y|=R can be inclosed in a parallel subcube of edge length R the desired result follows from (13).

COROLLARY. Let u = u(x) have strong derivatives which are in L^p $(1 \le p < \infty)$ on a bounded cube C_0 . Assume there is a nondecreasing function K = K(R) and a constant ϵ , $0 < \epsilon \le 1$, such that for every parallel subcube C

(14)
$$\int_{C} |\operatorname{grad} u(x)|^{p} dx \leq K^{p}(R) R^{(n-p)+p\epsilon}$$

holds, R being the edge length of C. Then there is a function v(x) = u(x) a.e. in C_0 such that

$$|v(x) - v(y)| \leq K_2 K(|x - y|) |x - y|^{\epsilon}$$

holds for all points x, y in C_0 and K_2 depends only on ϵ and n.

Proof. It is a simple matter to prove the Wirtinger inequality

(16)
$$\int_{C} |u(x) - u_{C}| dx \leq K_{3}R \int_{C} |\operatorname{grad} u(x)| dx,$$

with K_3 depending only on n. Applying the Hölder inequality to the right side of (16) we get

(17)
$$\int_{C} |u(x) - u_{C}| dx \leq K_{3} R^{n+1-n/p} \left(\int_{C} |\operatorname{grad} u(x)|^{p} dx \right)^{1/p}$$

and the desired result follows from the previous theorem.

This paper has been written with the support of the Office of Naval Research, under project Nonr 710 (16), NR-043-041.

REFERENCE

1. F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426.

University of Minnesota

PHRAGMÉN-LINDELÖF THEOREMS FOR SECOND ORDER QUASI-LINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

JOHN O. HERZOG1

Phragmén-Lindelöf theorems for uniformly elliptic partial differential equations have been the subject of several papers in recent years (see e.g. [3; 4; 6; 7; 8; 10]). Here we are concerned with the Phragmén-Lindelöf theorem for second order quasi-linear elliptic equations of the form

(1)
$$L[z] \equiv \sum a_{ij}(x, p)z_{x_ix_j} = f(x, z, p),$$

which need not be uniformly elliptic. The main result is Theorem 1 which roughly says that if u(x) is a subfunction with respect to (1) in a domain D contained in a half space and if $u(x) \le 0$ on the boundary of D then either $u(x) \le 0$ throughout D or the maximum of u(x) on a sphere of radius r is of order not less than r^{η} for some $\eta > 0$. Probably the most interesting feature of this theorem is that its proof essentially depends only on the behavior of the functions $a_{ij}(x, p)$ and f(x, z, p) for $\sum p_i^2 \le 1$. For $f \equiv 0$ and dimension n = 2 it is shown that $\eta = 1$.

Let D be an unbounded domain contained in a half space of n-dimensional Euclidean space and let T be the domain in 2n-dimensional T

Received by the editors May 14, 1963.

¹ This paper is a portion of a doctoral thesis written under the supervision of Professor Lloyd K. Jackson at the University of Nebraska.