(17)
$$\int_{C} |u(x) - u_{C}| dx \leq K_{3} R^{n+1-n/p} \left(\int_{C} |\operatorname{grad} u(x)|^{p} dx \right)^{1/p}$$

and the desired result follows from the previous theorem.

This paper has been written with the support of the Office of Naval Research, under project Nonr 710 (16), NR-043-041.

REFERENCE

1. F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426.

University of Minnesota

PHRAGMÉN-LINDELÖF THEOREMS FOR SECOND ORDER QUASI-LINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

JOHN O. HERZOG1

Phragmén-Lindelöf theorems for uniformly elliptic partial differential equations have been the subject of several papers in recent years (see e.g. [3; 4; 6; 7; 8; 10]). Here we are concerned with the Phragmén-Lindelöf theorem for second order quasi-linear elliptic equations of the form

(1)
$$L[z] \equiv \sum a_{ij}(x, p)z_{x_ix_j} = f(x, z, p),$$

which need not be uniformly elliptic. The main result is Theorem 1 which roughly says that if u(x) is a subfunction with respect to (1) in a domain D contained in a half space and if $u(x) \le 0$ on the boundary of D then either $u(x) \le 0$ throughout D or the maximum of u(x) on a sphere of radius r is of order not less than r^{η} for some $\eta > 0$. Probably the most interesting feature of this theorem is that its proof essentially depends only on the behavior of the functions $a_{ij}(x, p)$ and f(x, z, p) for $\sum p_i^2 \le 1$. For $f \equiv 0$ and dimension n = 2 it is shown that $\eta = 1$.

Let D be an unbounded domain contained in a half space of n-dimensional Euclidean space and let T be the domain in 2n-dimensional T

Received by the editors May 14, 1963.

¹ This paper is a portion of a doctoral thesis written under the supervision of Professor Lloyd K. Jackson at the University of Nebraska.

sional Euclidean space defined by $T = \{(x, p) = (x_1, \dots, x_n, p_1, \dots, p_n) : x \in D \text{ and } -\infty < p_1, \dots, p_n < +\infty \}$. Throughout the paper we shall use the notation: $p_i = \partial z/\partial x_i$, $r_{ij} = \partial^2 z/\partial x_i \partial x_j$, $||x||^2 = \sum_{i=1}^n x_i^2$. \sum will denote summation over one or both of the indices $i, j, 1 \leq i$, $j \leq n$.

Equation (1) is considered subject, at various times, to certain of the following conditions:

- (i) The $a_{ij}(x, p)$ are continuous and have continuous first partial derivatives with respect to the p_i for all $(x, p) \in T$.
- (ii) $\sum a_{ij}(x, p)\mu_i\mu_j > 0$ for all real μ_1, \dots, μ_n (not all zero) and all $(x, p) \in T$ (i.e. we assume pointwise ellipticity).
 - (iii) $a_{ij} = a_{ji}$ and the determinant of the (a_{ij}) is identically one on T.
- (iv) There exists an $\alpha_0 > 0$ such that $(\sum a_{ii})^n \le \alpha_0$ for all $(x, p) \in T$ with $\sum p_i^2 \le 1$.
- (v) f(x, z, p) is continuous and has continuous first partial derivatives with respect to z, p_1, \dots, p_n , with $f_z \ge 0$ for all $x \in D$ and for all z and p_i .
- (vi) There is a fixed $m > n^{1/2}$ such that there exist constants β and γ so that $|f(x, z, p)| \leq \beta(p_1^2 + \cdots + p_n^2)^{\gamma}$ for all $x \in D$ whenever $\sum p_i^2 \leq 1$, where $\gamma \geq (2-\eta)/(2-2\eta)$, and

$$\eta = \log_3 \frac{1 - \exp[-8m\alpha_0/(n-1)^{n-1}]}{1 - \exp[-2m\alpha_0/(n-1)^{n-1}]}.$$

The proofs will be based on the following principle:

MAXIMUM PRINCIPLE [5]. Let D be a bounded domain in Euclidean n-space and let $F(x_1, \dots, x_n, z, p_1, \dots, p_n, r_{11}, r_{12}, \dots, r_{nn})$ be continuous and have continuous first partial derivatives with respect to $z, p_1, \dots, p_n, r_{11}, r_{12}, \dots, r_{n-1,n}$ and r_{nn} for all $x \in D$ and all $(z, p_1, \dots, r_{nn}), -\infty < z, p_1, \dots, p_n, r_{11}, r_{12}, \dots, r_{nn} < \infty$. Furthermore, assume that $F_z \leq 0$ and that the quadratic form $\sum F_{r_i;\mu_i\mu_j}$ is positive definite for all $x \in D$ and all (z, p_1, \dots, r_{nn}) . Then if $z_1(x)$ and $z_2(x) \in C^{(2)}(D)$, if the upper limit of $z_1(x)$ is less than or equal to the lower limit of $z_2(x)$ as x approaches any boundary point of D, and if

$$F(x_1, \cdots, x_n, z_1, z_{1x_1} \cdots, z_{1x_n}, z_{1x_1x_1}, z_{1x_1x_2}, \cdots, z_{1x_nx_n}) \geq 0$$

in D and

$$F(x_1, \cdots, x_n, z_2, z_{2x_1}, \cdots, z_{2x_n}, z_{2x_1x_1}, z_{2x_1x_2}, \cdots, z_{2x_nx_n}) \leq 0$$

in D, it follows that either $z_1 < z_2$ in D or $z_1 \equiv z_2$ in D.

The conditions placed on equation (1) are such that L[z]-f(x, z, p) satisfies the hypothesis placed on F in the maximum principle.

THEOREM 1. Assume equation (1) satisfies conditions (i)-(vi). Let u(x) satisfy in D the inequality $L[u] \ge f(x, u, p)$ and let the upper limit of u(x) be nonpositive as x approaches any point on the boundary of D. Then if

$$\limsup_{r\to\infty}\frac{M(r)}{r^{\eta}}\leq 0,$$

where M(r) = l.u.b. u(x) for ||x|| = r, $x \in D$, it follows that $u(x) \le 0$ throughout D.

Proof. In addition to the previously defined notation we let

$$t^{2} = x_{1}^{2} + \dots + x_{n-1}^{2}, \qquad G_{R}^{i} = D \cap \left\{x : t^{2} + (x_{n} + R)^{2} \leq (iR)^{2}\right\},$$

$$S_{R}^{i} = \left\{x : t^{2} + (x_{n} + R)^{2} = (iR)^{2}, x_{n} \geq 0\right\},$$

$$N_{i}(R) = \text{l.u.b. } u(x) \text{ for } x \in S_{R}^{i} \cap D, \qquad i = 2, 4.$$

$$D_{iR} = \left\{x : x \in D \text{ and } ||x|| \leq iR\right\}, \qquad i = 1, 2, 4.$$

Without loss of generality consider D contained in the half space $x_n > 0$. Assume $\limsup_{r \to \infty} M(r)/r^n \le 0$ and that M(R') > 0 for some R' (and hence by the maximum principle for all $R \ge R'$). For $R \ge R'$ define

$$w_R(x) = \frac{t^2 + (x_n + R)^2}{4R^2}.$$

The following preliminary bounds will be used to show that there exists a constant $\alpha > 0$, dependent on α_0 , m, and n, such that

$$W_R(x) \equiv N_2(R) \frac{1 - e^{-\alpha v_R}}{1 - e^{-\alpha}}$$

satisfies $L[W_R] \leq f(x, W_R, W_{Rx})$ for all $x \in G_R^4$ when R is sufficiently large. Note that by the maximum principle, $N_2(R) > 0$.

By the Schwarz inequality,

(2)
$$\left| \sum a_{ij} w_{Rx_ix_j} \right| \leq \left(\sum a_{ij}^2 \right)^{1/2} \left(\sum w_{Rx_ix_j}^2 \right)^{1/2},$$

and, since the quadratic form is assumed positive definite, we have [2, p. 32]

$$\sum a_{ij}w_{x_i}w_{x_j} \ge \left[\min_{1 \le i \le n} \lambda_i(x, p)\right] \sum w_{x_i}^2,$$

where the $\lambda_i(x, p)$ are the characteristic roots of $A \equiv (a_{ij})$ at the point $(x, p) \in T$. Using a well-known inequality [1, p. 67], we have

$$\lambda_{\min}^{A} \ge \left[\det A\right] \left[\frac{n-1}{\operatorname{Trace} A - \lambda_{\min}^{A}}\right]^{n-1} \ge \left[\det A\right] \left[\frac{n-1}{\sum a_{ii}}\right]^{n-1},$$

where λ_{\min}^{A} denotes a minimum characteristic root of the real positive definite matrix A. Hence, since det A=1,

(3)
$$\sum a_{ij}w_{Rx_i}w_{Rx_j} \ge \left\lceil \frac{n-1}{\sum a_{ij}} \right\rceil^{n-1} \sum w_{Rx_i}^2.$$

Also,

(4)
$$\sum a_{ij}^2 = \left(\sum a_{ii}\right)^2 - \sum \left(a_{ii}a_{jj} - a_{ij}^2\right) \leq \left(\sum a_{ii}\right)^2.$$

Thus by (2), (3), and (4) above we see that

$$L[W_R] - f(x, W_R, W_{Rx})$$

$$= N_2(R) \frac{\alpha e^{-\alpha w_R}}{1 - e^{-\alpha}} \left\{ \sum_{ij} a_{ij} w_{Rx_i x_j} - \alpha \sum_{ij} a_{ij} w_{Rx_i} w_{Rx_j} \right\} - f(x, W_R, W_{Rx})$$

(5)
$$\leq \frac{(n-1)^{n-1}N_2(R)\alpha e^{-\alpha w_R} \sum_{i=1}^{n} w_{Rx_i}^2}{(1-e^{-\alpha})(\sum_{i=1}^{n} a_{ii})^{n-1}}$$

$$\cdot \left\{ \frac{\left(\sum a_{ii}\right)^{n} \left[\sum w_{Rx_{i}x_{j}}^{2}\right]^{1/2}}{(n-1)^{n-1} \sum w_{Rx_{i}}^{2}} - \alpha - \frac{(1-e^{-\alpha})(\sum a_{ii})^{n-1} f(x, W_{R}, W_{Rx})}{N_{2}(R)\alpha(n-1)^{n-1} e^{-\alpha w_{R}} \sum w_{Rx_{i}}^{2}} \right\}$$

$$\equiv G \cdot H,$$

where H denotes the expression contained in the braces. Now,

(6)
$$1/4R^2 \le \sum w_{Rx_i}^2 \le 4/R^2$$
 for $x \in G_R^4$

and $w_{Rx_ix_i} = 1/2R^2$ while $w_{Rx_ix_j} = 0$ for $i \neq j$. Therefore

(7)
$$\left(\sum_{i} w_{Rx_{i}x_{i}}^{2}\right)^{1/2} / \sum_{i} w_{Rx_{i}}^{2} \le \left[(n/4R^{4})^{1/2} \right] / \left[1/4R^{2} \right] = 2n^{1/2} \text{ for } x \in G_{R}^{4}.$$

Since $w_R(x) \ge 1/4$ for $x \in D$ (independent of R),

$$[4\alpha^2 e^{-2\alpha w_R(x)}]/(1-e^{-\alpha})^2$$

is bounded (independent of R and $\alpha > 0$) by a constant K_1 for all $x \in D$. Thus

(8)
$$\sum W_{Rx_{i}}^{2}(x) = N_{2}^{2}(R) \frac{\alpha^{2} e^{-2\alpha w_{R}(x)}}{(1 - e^{-\alpha})^{2}} \sum w_{Rx_{i}}^{2}$$

$$\leq K_{1} N_{2}^{2}(R) / R^{2} \quad \text{for all } x \in G_{R}^{4}.$$

It follows from hypothesis (iii) that $\prod_{i=1}^{n} \lambda_{i} = 1$. But by the theorem on the geometrical and arithmetical mean,

$$(\sum \lambda_i)/n \ge \left(\prod_{1}^n \lambda_i\right)^{1/n} = 1.$$

Therefore $\alpha_0 \ge (\sum a_{ii})^n = (\sum \lambda_i)^n \ge n^n$. Thus for any fixed $m > n^{1/2}$ we have $m\alpha_0/(n-1)^{n-1} > n\sqrt{n} \ge 2\sqrt{2}$ and we see from the expression for η that $0 < \eta < 1$. Hence $\limsup_{R\to\infty} M(R)/R^\eta \le 0$ implies $\limsup_{R\to\infty} M(2R)/R \le 0$ and since $D_{2R} \supset G_R^2$ we can choose $R^* > R'$ sufficiently large so that for $R \ge R^*$, $N_2^2(R)/R^2 \le 1/K_1$. Thus $\sum W_{Rx_i}^2(x) \le 1$ for all $x \in G_R^4$, $R \ge R^*$. Consequently, by hypotheses (iv) and (vi), respectively,

$$\left[\sum a_{ii}(x, W_{Rx})\right]^n \leq \alpha_0,$$

and

(9)
$$|f(x, W_R, W_{Rx})| \leq \beta (\sum W_{Rx}^2)^{\gamma}$$
 for all $x \in G_R^4$.

Expression G of (5) is positive and by (7), (8), and (9) H is bounded by

$$\frac{2n^{1/2}\alpha_0}{(n-1)^{n-1}} - \alpha + \frac{\left(\sum a_{ii}\right)^{n-1}\beta\alpha^{2\gamma-1} e^{-\alpha(2\gamma-1)w_R(x)} \left(\sum w_{Rx_i}^2\right)^{\gamma-1}N_2^{2\gamma-1}(R)}{(n-1)^{n-1}(1-e^{-\alpha})^{2\gamma-1}}$$
for all $x \in C_2^4$

Since $\gamma \ge (2-\eta)/(2-2\eta) > 1$ and $w_R(x) \ge 1/4$ in G_R^4 we have that

$$\frac{\alpha^{2\gamma-1}e^{-\alpha(2\gamma-1)w_R(x)}}{(1-e^{-\alpha})^{2\gamma-1}} \leq J,$$

where J is a constant independent of R and $\alpha > 0$. Therefore it follows from (6) and hypothesis (iv) that (10) is

$$\leq \frac{2n^{1/2}\alpha_0}{(n-1)^{n-1}} - \alpha + \frac{4^{\gamma-1}\alpha_0^{(n-1)/n}\beta J N_2^{2\gamma-1}(R)}{(n-1)^{n-1}R^{2\gamma-2}}.$$

Because $\limsup_{R\to\infty} M(R)/R^{\eta} \leq 0$ we may choose $R^{**}>R^*$ such that

$$\frac{N_2^{2\gamma-1}(R)}{R^{2\gamma-2}} \le \left[\frac{N_2(R)}{R^{\eta}}\right]^{2\gamma-1} < \frac{2\alpha_0[m-n^{1/2}]}{4^{\gamma-1}\alpha_0^{(n-1)/n}\beta J}$$

for all $R \ge R^{**}$. Thus, retracting the preceding inequalities, we see that $\alpha = 2m\alpha_0/(n-1)^{n-1}$ suffices to make

$$L[W_R] - f(x, W_R, W_{Rx}) \leq 0$$
 for all $x \in G_R^4$, $R \geq R^{**}$.

Throughout the remainder of this proof we consider an arbitrary but fixed $R > R^{**}$. Assume $u(x) \leq W_R(x)$ for all $x \in D \cap S_R^4$. Now $u(x_0) = N_2(R)$ for some point $x_0 \in D \cap S_R^2$, x_0 interior to G_R^4 , and $W_R(x) = N_2(R)$ on S_R^2 . Therefore it follows from the maximum principle that $W_R(x) \equiv u(x)$ in G_R^4 However, $u(x) < W_R(x)$ at some points of $D \cap S_R^2 \subset G_R^4$. Consequently $u(x) > W_R(x)$ at some points of $D \cap S_R^4$, so

$$N_4(R) \ge \min_{D \cap S_R^4} W_R(x) = N_2(R) \frac{1 - e^{-4\alpha}}{1 - e^{-\alpha}},$$

and hence, for any positive integer j,

$$N_4(3^jR) \ge N_2(3^jR) \frac{1 - e^{-4\alpha}}{1 - e^{-\alpha}}$$

Now for every R, $G_R^4 \subset G_{3R}^2$, $G_R^4 \subset D_{4R}$, and $D_R \subset G_R^2$, so it follows by the maximum principle again that $N_2(3^iR) \ge N_4(3^{i-1}R)$, $M(4 \cdot 3^iR) \ge M_4(3^iR)$, and $N_2(R) \ge M(R)$. Hence by iteration we have

$$M(4 \cdot 3^{j}R) \ge M(R)\sigma^{j+1}$$
 where $\sigma = \frac{1 - e^{-4\alpha}}{1 - e^{-\alpha}}$.

Denoting $4 \cdot 3^{i}R$ by R_{i} we have

$$M(R_j) \ge M(R)\sigma^{j+1} = K'R_j^{\log_3\sigma}, \qquad K' = \frac{M(R)\sigma}{(4R)^{\log_3\sigma}},$$

from which we conclude that $\lim\inf_{R\to\infty}M(R)/R^{\eta}>0$. Thus we have a contradiction and we conclude that $u(x)\leq 0$ in D.

THEOREM 2. Assume that (1) satisfies conditions (i), (ii), and (iii) with $f \equiv 0$ and that D is contained in the n-dimensional "cone" $x_n \ge r \sin \alpha$ for some α , $0 < \alpha < \pi/2$. Let u(x) satisfy in D the inequality $L[u] \ge 0$ and let the upper limit of u(x) be nonpositive as x approaches any point on the boundary of D. Then if

$$\limsup_{r\to\infty}\frac{M(r)}{r}\leq 0,$$

it follows that $u(x) \leq 0$ throughout D.

PROOF. Assume that $\limsup_{r\to\infty} M(r)/r \le 0$ and that $M(R_1) > 0$ for some R_1 . By continuity of u, $u(x_0) = M(R_1)$ for some x_0 on $D \cap \{x: ||x|| = R_1\}$. For $0 < k_0 < M(R_1)/R_1$ we see that $z(x) \equiv k_0 x_n < M(R_1)$ on $||x|| = R_1$, $x \in D$; hence $z(x_0) < u(x_0)$. Since $\limsup_{R\to\infty} M(R)/R \le 0$ we may, for $0 < \epsilon < k_0 \sin \alpha$, choose $R_{\epsilon} > R_1$ such that $M(R_{\epsilon}) < \epsilon R_{\epsilon}$. Therefore, for $||x|| = R_{\epsilon}$, $x \in D$, we have

$$u(x) \le \epsilon R_{\epsilon} \le k_0 R_{\epsilon} \sin \alpha \le z(x)$$
.

Hence by the maximum principle $u(x) \le z(x)$ in $D \cap \{x : ||x|| \le R_{\epsilon}\}$, a contradiction. It follows that $u(x) \le 0$ in D.

THEOREM 3. For dimension n=2, the preceding theorem holds for any domain D contained in a half plane.

PROOF. It suffices to consider D contained in the half plane y>0. For any $\epsilon>0$ define

$$u_{\epsilon}(x, y) = -\epsilon y + u(x, y)$$

and let

$$L_{\epsilon}[z] = a(x, y, p, q + \epsilon)z_{xx} + 2b(x, y, p, q + \epsilon)z_{xy} + c(x, y, p, q + \epsilon)z_{yy},$$
where $p = z_x$, $q = z_y$.

Choose $R_{\epsilon} > 0$ such that $u(x, y) \leq (\epsilon/2)R$ for $x^2 + y^2 = R^2 \geq R_{\epsilon}^2$. Then for $y \geq R_{\epsilon}$ we will have

$$u_{\epsilon}(x, y) \leq -\epsilon R_{\epsilon} + (\epsilon/2)R_{\epsilon} < 0.$$

Assume $u_{\epsilon}(0, y) > 0$ for some y', $0 < y' < R_{\epsilon}$. Then $u_{\epsilon}(0, y)$ attains a positive maximum M_{ϵ} at some point $(0, y_0)$, $0 < y_0 < R_{\epsilon}$. Define

$$v_{\epsilon}(x, y) = u_{\epsilon}(x, y) - M_{\epsilon}$$

We may apply Theorem 2 to $L_{\epsilon}[z] = 0$ and v_{ϵ} in $D_1 \equiv D \cap \{\text{first quadrant}\}\$ and $D_2 \equiv D \cap \{\text{second quadrant}\}\$ individually to conclude that $u_{\epsilon}(x, y) \leq M_{\epsilon}$ throughout D.

Next consider $D_{R_1} \equiv D \cap \{(x, y) : x^2 + y^2 \leq R_1^2\}$ for any $R_1 > R_{\epsilon}$. At the point $(0, y_0)$ interior to D_{R_1} we have $u_{\epsilon}(0, y_0) = M_{\epsilon}$; hence by the maximum principle $u_{\epsilon} \equiv M_{\epsilon}$ in D_{R_1} , which is a contradiction since $u_{\epsilon}(0, R_{\epsilon}) \leq 0 < M_{\epsilon}$. Therefore $u_{\epsilon}(0, y) \leq 0$ for all $y \geq 0$, $(0, y) \in D$. Now apply Theorem 2 to $L_{\epsilon}[z] = 0$ and u_{ϵ} in D_1 and D_2 individually to conclude that $u(x, y) \leq \epsilon y$ throughout D. Since ϵ is arbitrary we conclude that $u(x, y) \leq 0$ throughout D.

REFERENCES

- 1. E. Bodewig, Matrix calculus, Interscience, New York, 1956.
- 2. R. Courant and D. Hilbert, Methods of mathematical physics, Vol. 1, Interscience, New York, 1953.

- 3. Avner Friedman, On two theorems of Phragmén-Lindelöf for linear elliptic and parabolic differential equations of the second order, Pacific J. Math. 7 (1957), 1563-1575.
- 4. David Gilbarg, The Phragmén-Lindelöf theorem for elliptic partial differential equations, J. Rational Mech. Anal. 1 (1952), 411-417.
- 5. E. Hopf, Elementarie Betrachtungen über die Losungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, S.-B. Preuss. Akad. Wiss. 19 (1927), 147-152.
- 6. —, Remarks on the preceding paper by D. Gilbarg, J. Rational Mech. Anal. 1 (1952), 419-424.
- 7. E. M. Landis, Some questions on the qualitative theory of elliptic and parabolic equations, Uspehi Mat. Nauk 14 (1959), 22-85; Amer. Math. Soc. Transl. (2) 20 (1962), 173-238.
- 8. ——, Some questions of the qualitative theory of elliptic equations of the second order, Uspehi Mat. Nauk 18 (1963), 3-62.
- 9. E. Phragmén and E. Lindelöf, Sur une extension d'un principe classique de l'analyse, Acta Math. 31 (1908), 381-406.
- 10. J. B. Serrin, On the Phragmén-Lindelöf principle for elliptic differential equations, J. Rational Mech. Anal. 3 (1954), 395-413.

University of Nebraska