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%)) fcl u(x) — uc| dx < KsRn+l—n/p(fc|gradu(x) Ipdx)l/p

and the desired result follows from the previous theorem.
This paper has been written with the support of the Office of Naval
Research, under project Nonr 710 (16), NR-043-041.
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PHRAGMEN-LINDELOF THEOREMS FOR SECOND
ORDER QUASI-LINEAR ELLIPTIC PARTIAL
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Phragmén-Lindeléf theorems for uniformly elliptic partial differ-
ential equations have been the subject of several papers in recent
years (see e.g. [3; 4; 6; 7; 8; 10]). Here we are concerned with the
Phragmén-Lindelsf theorem for second order quasi-linear elliptic
equations of the form

(1) L[Z] = Z aii(x’ p)Zz.‘zj = f(x7 3, P),

which need not be uniformly elliptic. The main result is Theorem 1
which roughly says that if #(x) is a subfunction with respect to (1)
in a domain D contained in a half space and if #(x) <0 on the bound-
ary of D then either #(x) <0 throughout D or the maximum of %(x)
on a sphere of radius r is of order not less than 77 for some >0.
Probably the most interesting feature of this theorem is that its
proof essentially depends only on the behavior of the functions
aij(x, p) and f(x, 3, p) for D_p?<1. For f=0 and dimension n=2 it is
shown thatn=1.

Let D be an unbounded domain contained in a half space of -
dimensional Euclidean space and let T be the domain in 2%#-dimen-
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sional Euclidean space defined by T'= {(x, p)=(x1, * * * , Xn, D1, *
pn)ixEDand —0 <py, + -+, Ppa<+ @ } Throughout the paper we
shall use the notation: p,=08z/dx;, ry=0%/dx0%;, ||x[|2= D742
Z will denote summation over one or both of the indices ¢, j, 157,
jsn.

Equation (1) is considered subject, at various times, to certain of
the following conditions:

(i) The a;i(x, p) are continuous and have continuous first partial
derivatives with respect to the p; for all (x, p)ET.

(i) X asj(x, p)uim;>0 for all real wy, - - -, u. (not all zero) and
all (x, p)ET (i.e. we assume pointwise ellipticity).

(iii) @;;=a;; and the determinant of the (a,;) is identically one on T.

(iv) There exists an >0 such that (D a:)*<ay, for all (x, p)ET
with D pf<1.

(v) f(x, 2, p) is continuous and has continuous first partial deriva-
tives with respect to 2, 1, * + +, P, with f; 20 for all x&D and for all
z and p..

(vi) There is a fixed m>n'/% such that there exist constants 8 and
v so that |f(x, 2, p)| SBWE+ - - - +p%) for all xED whenever
2 pi =1, where y=(2—7)/(2—27), and

1 — exp[—8mao/(n — 1)»1]
1 — exp[—2mao/(n — 1)71] '

7 = logs

The proofs will be based on the following principle:

MaxiMuM PriNcIPLE [5]. Let D be a bounded domain in Euclidean
n-space and let F(xy, - -+, Xn, 3, P1, * * =, Pny 711, 712, * * *, Tnn) be
continuous and have continuous first partial derivatives with re-
spect to 2, p1, * * *, Pay 711, T12, * * * 5 Ta—1,n ANd 74, for all xED and all
(2, b1, -+ - s Tan)y — @ <2, D1, * " *, Py 11y 112, * * +, Tan < . Further-
more, assume that F,=<0 and that the quadratic form ZF,-.-’-[.L;'[.L,' is
positive definite for all x€D and all (2, p1, - - -, ?as). Then if 2 (x)
and 2.(x) EC® (D), if the upper limit of z;(x) is less than or equal to
the lower limit of 23(x) as x approaches any boundary point of D, and
if

F(xI, oty Xy 21y, %12y 0 zlzn; zlzlzp B1zyzey * C * zlz,,z,,) g 0
in D and
F(xly c oty Xny 22, zZzp R 222,,’ ZZIlzv 221'132, Sty 222,3,,) é 0

in D, it follows that either 2z, <z, in D or z1=2; in D,
The conditions placed on equation (1) are such that L[z] —f(x, 3, p)
satisfies the hypothesis placed on F in the maximum principle.
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THEOREM 1. Assume equation (1) satisfies conditions (i)-(vi). Let
u(x) satisfy in D the inequality L{u]2f(x, u, p) and let the upper limit
of u(x) be nonpositive as x approaches any point on the boundary of D.
Then +f

. M
lim sup =0,
r—wo r"

where M(r)=lu.b. u(x) for ||x||=r, xED, it follows that u(x)<0
throughout D.

Proor. In addition to the previously defined notation we let
t2=xi+---+x:_1, G;a"—"'Dm{xt2+(xn+R)2§(1’R)2},
Se={2:0 + (@ + R = (R, 2. 2 0}, \

Ni(R) = Lub. u(z) for t €Sz D, =24
Dir={x:2x€ D and ||a]| <R}, i=1,2,4.

Without loss of generality consider D contained in the half space
%,>0. Assume lim sup,., M(r)/r*<0 and that M(R’)>0 for some
R’ (and hence by the maximum principle for all R=R’). For R=R’'
define

2+ (%, + R)?

wel®) = s

The following preliminary bounds will be used to show that there
exists a constant a>0, dependent on a,, m, and %, such that
— g

1 —

e-—a

satisfies L[Wr]|<f(x, Wg, Wz,) for all x€G} when R is sufficiently
large. Note that by the maximum principle, N:(R) > 0.
By the Schwarz inequality,

2.1/2 2 1/2
(2) l Z aiinzizjl = (E a%'i) (E sz.‘zj) )
and, since the quadratic form is assumed positive definite, we have
[2, p. 32]

. 2
Z Qi Wz, We; = I:lgltlg )‘f(x: P):IZ Wzgy
Si<n

where the \i(x, p) are the characteristic roots of 4 = (a;;) at the point
(x, p) ET. Using a well-known inequality [1, p. 67], we have
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— 1 n—1 -1 n—1
Min Z [det 4] l:———n————:l = [det A][” :| ,

Trace 4 — M, E ass

where M, denotes a minimum characteristic root of the real positive
definite matrix 4. Hence, since det 4 =1,

n—1 n—1 2
3) 2GR Whey 2 I:Z a-«:l 2 Wra,.

Also,
4) Say= (T a) = X (aass — an) = (T 0"
Thus by (2), (3), and (4) above we see that
L[WR] _'f(x’ WR’ WRZ)

a e—aw

= Nz(R)

{ Z Qi WRzz; — az ac'j'sz"wa} — f(%, Wz, Wge)
© (= 1)""N2(R)°‘e "X v

= (1 — e (X a)™?
. { (E a;;)"[zw;zgzj]llz_ — (1 — e‘"‘)(z aii)"_lf(x’ e WRZ)}

(24
(= DT Ny(R)aln — 1)e=r 2 wh
=G-H,

where H denotes the expression contained in the braces.
Now,

(6) 1/4R* < 3" wrs, < 4/R°  for z € Gr

and Wgs.2;=1/2R? while Wge,.; =0 for ¢#j. Therefore

(1) (X Whewy) /Y wre; < [(n/4RY)*)/[1/4R"] = 20" for x € Gh.
Since wgr(x)=1/4 for x€D (independent of R),
[4a2e—2awg(z)] /(1 — )2

is bounded (independent of R and a>0) by a constant K; for all
x&D. Thus

4.1/2

a2e—2uw3 (z) 2

® D Wee(x) = N 2(R) '("“——e_;); 2 Wes

< Ki\Ny(R)/R’  for all # € Gh.
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It follows from hypothesis (iii) that []?A;=1. But by the theorem
on the geometrical and arithmetical mean,

= 1.

1/n
i

(S\/nz (Illx)

Therefore o= (D a:)"=(2_\)*=n" Thus for any fixed m>n!/2
we have ma,/(n—1)""1>n+/n=2+/2 and we see from the expression
for 7 that 0 <7 < 1. Hence lim supr.. M(R)/R* £ 0 implies
lim supg., M(2R)/R<0 and since D;z DGh we can choose R* >R’
sufficiently large so that for R2 R*, N7 (R)/R*<1/Ky. Thus ) W, (x)
=1 for all xEG}, R 2 R*. Consequently, by hypotheses (iv) and (vi),
respectively,
[2 aulx, Wro)]" £ ao,

and

© | e, Wa, Waa) | < B(2 lei’z,')7 for all € G.

Expression G of (5) is positive and by (7), (8), and (9) H is bounded
by

Zﬂllzao

—_— =
(n — 1)1

o> ai) B e T (T wa) TN TR

(’ﬂ — l)n—l(l — e—a)2-y—1
forallx € G;e.
Since y=(2—7)/(2—29) >1 and wg(x) =1/4 in G we have that
a21—16—a(27—1)wk(z)

(1 — e—a) 2y—1

(10)

IIA

g,

where J is a constant independent of R and o> 0. Therefore it follows
from (6) and hypothesis (iv) that (10) is

2 ¥—1 (n—1)/n 2y—-1

21 o n 4 a BIN: (R)
St-n— © (n — 1)=1Ror

Because lim supg.. M(R)/R"<0 we may choose R**>R* such
that

2y—1

N2 (R) < Ny(R) ' 2a0[m — n17?]
Rt ~ | Re 4rlg-DingJ
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for all R=R**. Thus, retracting the preceding inequalities, we see
that a=2may/(n—1)"! suffices to make

L[Wgr] — f(x, W, Was) 0 forall x € G, R = R**.

Throughout the remainder of this proof we consider an arbitrary
but fixed R>R**. Assume u(x) < Wg(x) for all x€DNSk. Now
u(xo) = N3(R) for some point xo&DNSh, x, interior to Gj, and
Wg(x) = N2(R) on Si. Therefore it follows from the maximum prin-
ciple that Wg(x) =u(x) in Gz However, %(x) < Wg(x) at some points
of DN\S} CGp. Consequently u(x) > Wr(x) at some points of DN\Sg,
)

1— gt
N4(R) = min WR(x) = Nz(R) )
DNSh 1 — ¢
and hence, for any positive integer j,
_— e—4a
Nu(3'K) 2 Ny(3'R) | :
- e"d

Now for every R, Gt CGag, Gt CDur, and Dg CGy, so it follows by
the maximum principle again that Ny(37R) = N4(37~'R), M(4-3'R)
= M4(37R), and No(R) = M(R). Hence by iteration we have

11—t
M(4-3’°R) = M(R)g*' where o = N
—— e—a
Denoting 4-3‘R by R; we have
2 0g30 M R
MER)z MRS = K'R™, K= MEB)s
(4R) logs o

from which we conclude that lim infg.., M(R)/R">0. Thus we have
a contradiction and we conclude that #(x) <0 in D.

THEOREM 2. Assume that (1) satisfies conditions (i), (ii), and (iii)
with f=0 and that D is contained in the n-dimensional “cone” x, 2 r sin o
for some a, 0 <a<w/2. Let u(x) satisfy in D the inequality L[u]Z=0
and let the upper limit of u(x) be nonpositive as x approaches any point
on the boundary of D. Then if

lim sup

T ® r

it follows that u(x) <0 throughout D.

=0
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PRrooOF. Assume that lim sup,., M(r)/r <0 and that M(R;) >0 for
some R;. By continuity of %, #(xe) = M(R;) for some xo on DN {x: ||«]|
=R,}. For 0<k,<M(R;)/R, we see that z(x)=~kex,<M(R)) on
Hx” =Ry, € D; hence 2(x,) <u(x,). Since lim supg.. M(R)/R=0 we
may, for 0 <e<k, sin o, choose R.> R; such that M(R,) <eR.. There-
fore, for ||+|| = R., xED, we have

u(x) = eRe < kR, sin a = z(x).

Hence by the maximum principle u(x) =z(x) in DN {x: “x” SR}, a
contradiction. It follows that #(x) £0 in D.

THEOREM 3. For dimension n=2, the preceding theorem holds for
any domain D contained in a half plane.

Proor. It suffices to consider D contained in the half plane y>0.
For any €>0 define

ux, y) = — ey + u(x, y)
and let

Lz] = a(x, 9,9, ¢ + 22z + 2b(x, 9, p, ¢ + 20y + (%, 3, D, ¢ + 201,

where p=2,, ¢=2,.
Choose R.>0 such that u(x, y) <(¢/2)R for x2+y2=R?=R% Then
for y= R, we will have

u(x, y) £ — eRe + (¢/2)R. < 0.

Assume #.(0, y) >0 for some y’, 0<y’' <R.. Then (0, y) attains
a positive maximum M, at some point (0, ¥,), 0 <yo <R.. Define

ve(x, ) = ulx, 3) — M..

We may apply Theorem 2 to L.[z]=0 and . in D;=DN {first quad-
rant} and Dy=DN {second quadrant} individually to conclude that
ue(x, ¥) £ M, throughout D.

Next consider Dp,=DN{(x, y): x2+y2<R:} for any R;>R.. At
the point (0, y,) interior to Dg, we have u.(0, y,) = M,; hence by the
maximum principle #.=M, in Dg,, which is a contradiction since
#(0, R.) <0< M.. Therefore #.(0, y) <0 for all y=0, (0, y) ED. Now
apply Theorem 2 to L.[2] =0 and %, in D; and D, individually to con-
clude that u(x, ¥) < ey throughout D. Since ¢ is arbitrary we conclude
that u(x, ) £0 throughout D.
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