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(17)        I   | u(x) - uc\ dx á K3R"+l-nl*(  I   | gradw(x) {'dx)

and the desired result follows from the previous theorem.
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PHRAGMÉN-LINDELOF THEOREMS FOR SECOND
ORDER QUASI-LINEAR ELLIPTIC PARTIAL

DIFFERENTIAL EQUATIONS

JOHN O. HERZOG1

Phragmen-Lindelöf theorems for uniformly elliptic partial differ-

ential equations have been the subject of several papers in recent

years (see e.g. [3; 4; 6; 7; 8; 10]). Here we are concerned with the

Phragmen-Lindelöf theorem for second order quasi-linear elliptic

equations of the form

(1) L[z] » Y o»(x, P)*x,xj = f(x, z, p),

which need not be uniformly elliptic. The main result is Theorem 1

which roughly says that if u(x) is a subfunction with respect to (1)

in a domain D contained in a half space and if u(x) ^ 0 on the bound-

ary of D then either u(x) ^0 throughout D or the maximum of u(x)

on a sphere of radius r is of order not less than r"1 for some ?7>0.

Probably the most interesting feature of this theorem is that its

proof essentially depends only on the behavior of the functions

Unix, p) and/(x, z, p) for YPt = l- Forf=0 and dimension « = 2 it is

shown that 77 = 1.

Let D be an unbounded domain contained in a half space of n-

dimensional Euclidean space and let T be the domain in 2«-dimen-
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sional Euclidean space defined by T= {(x, p) ss (xi, • • • , xn, pu • ■ • ,

pn).xED and — » <£,, • • • , ¿>„ < + co J. Throughout the paper we

shall use the notation: pi = dz/dx¡, rn=d2z/dxidxj, ||x||2= J^? x¿.

2 win denote summation over one or both of the indices i, j, l^i,

jèn.

Equation (1) is considered subject, at various times, to certain of

the following conditions :

(i) The a,j(x, p) are continuous and have continuous first partial

derivatives with respect to the pi for all (x, p) E T.

(ii) y^ffl,-,(*:, p)uißj>0 for all real pi, • • • , p„ (not all zero) and

all (x, p)ET (i.e. we assume pointwise ellipticity).

(iii) a(j = a¡i and the determinant of the (a¿3) is identically one on T.

(iv) There exists ana0>0 such that (X/x¿¿)"^a0 for all (x, p)ET

with 2>? = i-
(v) f(x, z, p) is continuous and has continuous first partial deriva-

tives with respect to z, pi, • • • , pn, with/z^0 for all xED and for all

z and pi.

(vi) There is a fixed m>n112 such that there exist constants ß and

7 so that |/(x, z, p)\ uß(p\+ ■ ■ ■ +p2»)y for all xED whenever

YjPÏ^I, where7^(2-r,)/(2-2r;), and

1 — exp[ — %mao/(n — l)n_1]
77 = log3-—- ■

1 — exp[—2mao/(n — l)"-1]

The proofs will be based on the following principle:

Maximum Principle [5]. Let D he a bounded domain in Euclidean

w-space and let F(xu • • • , xn, z, pi, ■ • • , pn, ru, rx2, ■ ■ ■ , rnn) be

continuous and have continuous first partial derivatives with re-

spect to z, pi, ■ ■ ■ , pn, fix, n2, ■ ■ , rn-i,n and rnn for all xED and all

(z, pi, • • ■ , rnn), — » <a, pu • ■ ■ , pn, ni, rn, • • • , r„»< ». Further-

more, assume that Fz^=0 and that the quadratic form ^ZFrijßiPj is

positive definite for all xED and all (z, pi, • • • , rnn). Then if Zi(x)

and z2(x)EC-2)(D), il the upper limit of zi(x) is less than or equal to

the lower limit of z2(x) as x approaches any boundary point of D, and

if

I (Xi,  '  '  ' , Xn, Zi, Zix¡ •  •  • , ZiXn, Zii1x1, ZiXiX2,  •  •  • , Ziinxn)  =  «

in D and

F(xi,  ■  ■  • , X„, Z2, Z2xi,  •  •   • , Z2Xn, Z2xyxv Z2xiX2,  ■  ■  ■ , Zfcr.zJ   è  0

in D, it follows that either zi <z2 in D or Zi=z2 in D.

The conditions placed on equation (1) are such that L [z] —f(x, z, p)

satisfies the hypothesis placed on F in the maximum principle.
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Theorem 1. Assume equation (1) satisfies conditions (i)-(vi). Let

u(x) satisfy in D the inequality L [u] ^f(x, u, p) and let the upper limit

of u(x) be nonpositive as x approaches any point on the boundary of D.

Then if
M(r)

lim sup ——- g 0,
r->o° r'

where M(r)=l.u.b.  u(x) for ]|x|| =r, xED, it follows that ¡í(x)¿0

throughout D.

Proof. In addition to the previously defined notation we let

t   = x\ + ■ ■ ■ + xl_i,       GR = Dt~\ [x:i + (xn + R)' g (iR)*},

Sr = [x: t  + (xn + R)2 = (iR)\ xn ^ 0},

Ni(R) = l.u.b. u(x) for xESRn D,       i = 2, 4.

DiR = {x: xE D and ||x|| £iR},       i = 1, 2, 4.

Without loss of generality consider D contained in the half space

x„>0. Assume lim supr^M M(r)/r*£0 and that M(R')>0 lor some

R' (and hence by the maximum principle for all R^R'). For R^R'

define

, .       t2 + (xn + R)2
Wr(x) =-ÏR2-' '

The following preliminary bounds will be used to show that there

exists a constant a>0, dependent on «o, m, and n, such that

1 — g-<™s
WR(x) m N2(R)-

1 — e~a

satisfies L[WR]^f(x, WR, Wrx) lor all xEGB when R is sufficiently

large. Note that by the maximum principle, N2(R)>0.

By the Schwarz inequality,

(2) | Y aifit>B*i*i |  £(Yaa)    (YwRxix,)    ,

and, since the quadratic form is assumed positive definite, we have

[2, p. 32]

Y aaWxiWxj ̂     min \i(x, p)   Y wxí,

where the \i(x, p) are the characteristic roots of A = (a¡,-) at the point

(x, p)ET. Using a well-known inequality [l, p. 67], we have
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.Trace A - X¿
> [det A]   =—       ,

LLaJ

where Xm¡n denotes a minimum characteristic root of the real positive

definite matrix A. Hence, since det A = l,

(3)

Also,

rM_n«-i 2

¿^ aijWRxiwRxj g    =—       ¿_, wRXt

LZ^auJ

(4) JZ an = (2 aii)  - Z (0<¿0;j - an) g (2 a«) .

Thus by (2), (3), and (4) above we see that

L[WB] - f(x, Wr, WRx)

ae-awR

(5)

N2(R)- { X anwRxiXj — a^Z anwRxiwRxj} — f(x, WR, WRx)
1 — e~"

(n - l)n-lN2(R)ae~awS £ «*««<

~ (I - e-«)(Z an)»-1

I-1   (n

2 nl/2
( JZ OiiHJZ wRxiXj] (1 - e-»)CZan)"-y(x,WR,WRx)

2(R)a(n - l)n-le-aw"^Z w\
Rx{

m GH,

N }

where H denotes the expression contained in the braces.

Now,

(6) l/4i?2 g £ wL,- è 4/i?2       for xEGR

and wRxiXi = l/2R2 while Wrx,Xj = 0 for í?íj. Therefore

(7) (Z «W/Z »L, = [(n/4i?Y/2]/[l/4i?2] = 2«1/2 fora: G G«.

Since  w¿e(x)2:l/4   for  xED   (independent of R),

[4a2e-2aw*M]/(l - e-a)2

is bounded (independent of R and a>0) by a constant Kx for all

xG-D. Thus
a2e-2aWS(x)

2 *W*) = «D Tr-^ S WBit<

KiN2(R)/R        for all x G GB.
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It follows from hypothesis (iii) that H?X,-= 1. But by the theorem

on the geometrical and arithmetical mean,

(n        \ 1/n

nx.j = i.

Therefore a0^ (Ya'i)" — (Y^i)n = nn- Thus for any fixed m>n112

we have ma0/(n— l)n~1>n\/n^2\/2 and we see from the expression

for r¡ that 0 < rj < 1. Hence lim sup^,«, M(R)/Ri ^ 0 implies

lim sup«,« M(2R)/R^0 and since D2R~)GB we can choose R*>R'

sufficiently large so that for R^R*, N¡(R)/R2 ^ 1/KV Thus Y WBxi (x)

^ 1 for all xEGr, R^R*. Consequently, by hypotheses (iv) and (vi),

respectively,

[Ya«(x, Wrx)]" è ao,

and

(9) | f(x, WR, WRx) I   g ß(Y Wlxf       lor all x E GR.

Expression G of (5) is positive and by (7), (8), and (9) if is bounded

by

2nll2ao
— a

(n - l)"-1

(!>«)     ßa      e (Ywrx;)     N2     (R)

(n- 1)—»(1 - e-«)^-'
i

for all x E Gr.

Since 7^(2— rj)/(2 — 2n) > 1 and wR(x) ^1/4 in GB we have that

a2y-lg-a C27—1 )wr (x)

(1 - ir«)»r-i
ÚJ,

where / is a constant independent of R and a > 0. Therefore it follows

from (6) and hypothesis (iv) that (10) is

2ra    a0 4     a0 ßJNs     (R)

= (n - l)"-1 ~~ a     '     (n - l)"-iR2y-2

Because lim sups,«, M(R.)/R*^Q we may choose R**>R* such

that

Nly~\R)      rN2(R)l2y-1     2ao[m-nV2]

R2y-2       =  |_      Rv     J ^ 4r-la(n-l)lnßJ
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for all R^R**. Thus, retracting the preceding inequalities, we see

that a — 2maol(n—l)n"x suffices to make

L\WR\ - f(x, Wr, WRx) g 0       for all x E GR, R ^ R**.

Throughout the remainder of this proof we consider an arbitrary

but fixed R>R**. Assume u(x) g WR(x) for all xEDHSr. Now

u(xq)=N2(R) for some point XoEDC^Sr, x0 interior to G%, and

Wr(x)=N2(R) on S%. Therefore it follows from the maximum prin-

ciple that WR(x)=u(x) in GR However, u(x) <Wr(x) at some points

of DP\SbEGr. Consequently u(x) > Wr(x) at some points of DÍ^Sr,

so

1 „-4a

Nt(R) ^  min WR(x) = N2(R)
snsi 1 — e~

and hence, for any positive integer j,

1 - e~ia

!

Ni(3jR) ^ N2(3'R)
1 - e~

Now for every R, GREGlB, GrEDar, and DrEGr, so it follows by

the maximum principle again that N2(3'R)^Ni(3>-1R), M(i-3'R)

^Mi(3'R), and N2(R)^M(R). Hence by iteration we have

M(i-3'R) ^ M(R)a-'+1     where    <r =-
1 — e~

Denoting 4-3'A by Rj we have

y+i      Trl _iog3"

M(Rj) ^ M(R)a     = K'Rj     , K' =
M(R)o-

(4i?)log"

from which we conclude that lim infÄ..co M(R)/R">0. Thus we have

a contradiction and we conclude that u(x) ¿0 in D.

Theorem 2. Assume that (1) satisfies conditions (i), (ii), and (iii)

withf= 0 and that D is contained in the n-dimensional "cone" xn^r sin a

for some a, 0<a<ir/2. Let u(x) satisfy in D the inequality L[m]^0

and let the upper limit of u(x) be nonpositive as x approaches any point

on the boundary of D. Then if

M(r)
lim sup-^ 0,

it follows that u(x) ¿0 throughout D.
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Proof. Assume that lim supr,M M(r)/r^0 and that M(Ri)>0 for

some J?i. By continuity of u, u(x0) = M(Ri) for some x0 on Df~\ [x: ||x||

= Ri}. For 0<ko<M(Ri)/Ri we see that z(x)=k0xn<M(Ri) on

||x|| =Ri, xED; hence z(x0) <w(x0). Since lim supij_w M(R)/R^0 we

may, for 0 <e<ko sin a, choose Re>Ri such that M(Rt) <ei?e. There-

fore, for ||x|| —Rt, xED, we have

u(x) ^ eR( ^ koRt sin a ^ s(x).

Hence by the maximum principle u(x)f^z(x) in DC\{x: \\x\\ ̂ Rf}, a

contradiction. It follows that u(x) ^0 in D.

Theorem 3. For dimension n = 2, the preceding theorem holds for

any domain D contained in a half plane.

Proof. It suffices to consider D contained in the half plane y>0.

For any €>0 define

ut(x, y) = — ey + u(x, y)

and let

Lt[z] = a(x, y,p,q + e)zxx + 2b(x, y, p, q + e)zru + c(x, y, p, q + t)zyy,

where p = zx, q = zy.

Choose Re>0 such that u(x, y) è (e/2)R for x2+y2 = R2^R\. Then

for y^Re we will have

ut(x, y) ^ - eRt + (e/2)Rt < 0.

Assume mc(0, y)>0 for some y', 0<y'<R(. Then w,(0, y) attains

a positive maximum M, at some point (0, y0), 0<yo<Rc. Define

Ve(x, y) = ut(x, y) — Mt.

We may apply Theorem 2 to Lt[z] =0 and vt in Di = DC\ {first quad-

rant} and D2 = DC\ {second quadrant} individually to conclude that

U((x, y) ^Mt throughout D.

Next consider DRl = DC\ \(x, y): x2+y2^R\} for any Ri>Rt. At

the point (0, y0) interior to DBl we have Me(0, y0) = Mt; hence by the

maximum principle uc^Mt in Drv which is a contradiction since

m((0, Ri) £0<MC. Therefore u((0, y)^0 for all y^0, (0, y)ED. Now

apply Theorem 2 to Lt[z] =0 and u, in £>i and D2 individually to con-

clude that u(x, y) ^ey throughout D. Since e is arbitrary we conclude

that u(x, y) gO throughout D.
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