HOMOTOPICAL NILPOTENCE OF S3

GERALD J. PORTER

In [1] Berstein and Ganea define the nilpotence of an H-space to be the least integer n such that the n-commutator is nullhomotopic. We prove that S^3 with the usual multiplication is 4 nilpotent.

Let X be an H-space. The 2-commutator $c_2: X \times X \to X$ is defined by $c_2(x, y) = xyx^{-1}y^{-1}$ where the multiplication and inverses are given by the H-space structure of X. The n-commutator $c_n: X^n \to X$ is defined inductively by $c_n = c_2(c_{n-1} \times 1)$.

Let $T_1^n(X)$ denote the subset of X^n consisting of those n-tuples (x_1, \dots, x_n) such that $x_i = *$ (the base point) for at least one i. It is well known that $c_n \mid T_1^n(X) \sim *$. Thus a map $\phi_n \colon X^n/T_1^n(X) \to X$ may be defined such that the homotopy class of ϕ_n depends only upon the homotopy class of c_n . Let Φ_n be the homotopy class of ϕ_n . Φ_n is the Samelson product and c_n is nullhomotopic if and only if $\Phi_n = 0$.

The usual multiplication for S^3 is that obtained by considering S^3 to be the set of unit quaternions. With this multiplication Q_{∞} , infinite quaternionic projective space, is a classifying space for S^3 .

Let $T: \pi(\Sigma S^{n-1}, X) \to \pi(S^{n-1}, \Omega X)$ be defined by (Tf(s))(t) = f(t, s), where $s \in S^{n-1}$, $f \in \pi(\Sigma S^{n-1}, X)$, and $t \in I$. T is an isomorphism of the homotopy groups.

Samelson [3] has shown that if $j: S^4 \to Q_{\infty}$ is inclusion, $Tj: S^3 \to \Omega Q_{\infty}$ is an H-homomorphism which is also a homotopy equivalence. He uses this to show that $T[[j, j], j] = (Tj)_*\Phi_3$ where the product on the left is the 3-fold iterated Whitehead product. Since T is an isomorphism, to show that S^3 is 4 nilpotent it suffices to show that the four-fold iterated Whitehead product of j is zero and the three-fold product is nonzero.

Let i_4 be the identity map on S^4 . Hilton [2] has shown that $0 \neq [[i_4, i_4], i_4] \in \pi_{10}(S^4)$ is the image of an element in $\pi_9(S^3)$ under the suspension homomorphism. He uses this fact to prove $[[i_4, i_4], i_4], i_4] = 0$.

LEMMA 1. [[[j, j], j], j] = 0.

PROOF. $[[[j, j], j], j] = j_*[[[i_4, i_4], i_4], i_4] = 0.$

LEMMA 2. $[[j, j], j] \neq 0$.

Received by the editors May 3, 1963.

PROOF. Consider the following diagram:

$$\pi_{10}(Q_{\infty}) \xrightarrow{T} \pi_{9}(\Omega Q_{\infty})$$

$$\uparrow j_{*} \qquad \uparrow (Tj)_{*}$$

$$\pi_{10}(S^{4}) \leftarrow \pi_{9}(S^{3}).$$

Let $f \in \pi_9(S^3)$, $s \in S^3$ and $t \in I$ then

$$(Tj_*\Sigma f(s))(t) = j_*\Sigma f(t, s) = j(\Sigma f)(t, s) = j(t, f(s)) = (Tj)_*f(s)(t).$$

Thus the above diagram commutes, i.e., $(Tj)_* = Tj_*\Sigma$. Since Tj is a homotopy equivalence $(Tj)_*$ is an isomorphism. By a remark above there is a $g \in \pi_9(S^3)$ such that $\Sigma g = [[i_4, i_4], i_4]$. We thus have $0 \neq (Tj)_*g = Tj_*\Sigma g = T[[j, j], j]$. Therefore $[[j, j], j] \neq 0$.

THEOREM. S³ with the usual multiplication is 4 homotopy nilpotent.

Corollary (to the proof). $\Sigma\Phi_3=[[i_4,i_4],i_4].$

REFERENCES

- 1. I. Berstein and T. Ganea, Homotopical nilpotence, Illinois J. Math. 5 (1961), 99-130.
- 2. P. J. Hilton, A certain triple Whitehead product, Proc. Cambridge Philos. Soc. 50 (1954), 189-197.
- 3. H. Samelson, Groups and spaces of loops, Comment. Math. Helv. 28 (1954), 278-287.

CORNELL UNIVERSITY