
COHOMOLOGY OF GROUPS IN ARBITRARY
CATEGORIES

BODO PAREIGIS1

1. Introduction. In this paper we give a short sketch of a method

of doing cohomology theory of group-like objects in arbitrary cate-

gories. The way of approach is closely connected with the usual the-

ory of cohomology of groups and has also been used by D. K. Harri-

son in [6]. Specifically the equivalence of the homogeneous, inhomo-

geneous, and normalized theories will be shown. Since we consider

arbitrary categories we must give all definitions by properties of maps

and cannot apply explicit computations with elements. But instead

of using the diagrams which contain the maps of those definitions,

we consider these maps as elements of the morphism sets and use the

algebraic structures of the morphism sets which are induced by the

abstractly defined structures of the objects.

In [6] two examples of this theory, Harrison's complex and

Amitsur's complex, have already been mentioned. Since the homo-

geneous and inhomogeneous definitions of Harrison's complex are

equivalent we can prove that Harrison's complex is a subcomplex of

Amitsur's complex.

This theory may be developed in greater generality using certain

functorial properties of the cohomology theory of groups as I. Ber-

stein pointed out to me. I hope that the possibilities of explicit com-

putation as described in this paper, might also be of some interest.

2. Notation. Let C be a category with finite direct products. This

means that for a finite collection of objects Pi, • • • , Bn in e there

exists an object ITP¿ = PiX ■ ■ • XBn in C and morphisms pi: HP¿

—>Bi, so called projections, such that for any object A in 6 and any

system of morphisms &¿: A—»P>¿, i=l, ■ ■ ■ , n there exists a unique

morphism b: A—*ÜP, with pib = bi. We write (bu • • • , bn) instead

of b. It is easy to see that (pi, ■ • • , pn)=id, the identity on IJP,.

The direct product of ra copies of B will be written as Bn. Further-

more we denote by Mor(^4, B) the set of morphisms from A to B.

For any finite set of morphisms &,£Mor(^4,-, B¡), i—I, ■ ■ ■ , ra we

denote by (£>i X • • • X bn) the morphism (bipi, • • • , bnpn)

EMor(J[Ai,  JlBi), where p3EMor(Y[Ai, A3). For the composi-
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tion of these morphisms we have the following rules [3, Propositions

3.5, 3.6, 3.7]: let bEMor(A, B), dEMor(B, Ci), ¿,GMor(C<, Di),
and e¿GMor(£>,-, Ei), then

(a) (cí, • • • , cn)b = (cib, • • ■ , cnb),

(2.1) (b)   (di X   •   •   •   X d„)(ci,  ■   ■   ■  ,Cn)  =  (diCl,  •   •   • , dnCn),

(c)  (eiX ■ ■ ■ X en)(di X ■ ■ • X d,) = Mi X • • • X e„d»).

Since we do not assume that the category 6 is a category with zeros

in the sense of [3 ] we have to use another axiom for the neutral ele-

ment for group-like structures.

The complete set of axioms which we shall use is:

(I) There exists a morphism p: XXX—*X. p is called a multiplica-

tion on X.

(II) There exists an element 0GMor(X, X) such that

(a) 0/ = Og for all objects A and all/, g E Mor (A, X),

(b) p(0, id) = id G Mor(X, X),
(c) p(id, 0) = id G Mor(X, X).

(III) p(ptXid)=p(idXp)EMor(X\ X).
(IV) There exists a morphism sEMor(X, X) such that ¿u(id, s)

=p(s, id) = 0EMor(X, X).

(V) Let id^(pi, p2) and r=(p2, pi)EMor(X2, X2), then p = pr.

If (I) and (III) hold, then X is called a semigroup, if (I), (II), (III),
and (IV) hold, then X is called a group and if (I), (II), (III), (IV)
and (V) hold, then X is called a commutative group. We write (X, p)

to indicate that p is the multiplication on X under consideration.

One easily proves that 0 G Mor (^4, A) is unique. We call 0 the

neutral element of the multiplication p. If the necessary axioms hold

for the multiplication p in X, we shall use the following notation

with XiGMorfyl, X)

(a) p(xi, x2) = xi-x2        (= xi + x2),

(2.2) (b) 0x^=1 (=0),

(c)              SXi = Xfl            (= — xi).

The notation in parentheses will be used, if the multiplication is

commutative, i.e., if axiom (V) holds.

Let now (X, p) be a semigroup and (Y, v) a commutative group

and XGMor(XX Y, Y). Then we shall write for all A and all mor-

phisms xGMor(,4, X), yEMor(A, Y)

(2.3) X(x, y) = x-y.
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This notation should not interfere with the notation (2.2.a).

We call Y an A-module, if F is a commutative group and X oper-

ates on Y as in (2.3) and if for all x, xit x2EMor(A, X); y, yt, yt

£Mor(^, F)

(a) x-(yi + y2) = x-yi + x-y2,

(2.4)
(b) (xi-x2)-y = xi-(x2-y)

and if Mor(A, Y)^0.
We shall call the A-module structure on F trivial if \(x, y)=y for

all A and all *£Mor(;4, X), ultratrivial if \(x, y) = 0 for all A and all

x£Mor(^4, X). If (X, u) has a neutral element 1 and if X(l, y)=y,

then we call Y a unitary A-module. Certainly a trivial A-module

structure on Y implies that F is a unitary A-module. We remark

furthermore that with the above definitions Mor (A, Y) is a group if

F is a group [3, Theorem 4.10].

All these definitions are already well known [3] but by using the

notation (2.2) and (2.3) computation will become easier and we can

easily refer to computations made in the classical case. Thus axioms

(2.4) are already given in this notation and stand for certain com-

mutative diagrams.

3. Cohomology of groups. In the notation given in the preceding

paragraph it is now easy to generalize the definition of the coho-

mology of a semigroup (A, u) with coefficients in an A-module (F, v).

We define the differentiation d": Mor (A-, F)->Mor(A"+\ F) by

dn(f)  = d"(f)(Pl,  ■■■, Pn+l)

= Pl-(f(p2,   ■   ■   ■ ,pn+i))

n

+  E (-l)y(íl,  ■   •  • , PrPi+U  ■   ■  ■ , Pn+l)
i-1

+ (-iy+if(pu---,pn),

where pt&Aor(X*+\ A), /£Mor(A", F) and (-l)«/=s-/. As in

ordinary cohomology theory [4] one checks dn+1dn(f) = 0 and that

3" is a homomorphism. Furthermore we define a set which we denote

by Mor(A°, F) = Mor(F, F)0, where 0£Mor(A, F). It is easy to

see that Mor(A°, F) is a commutative group under the induced multi-

plication of F. We define d°: Mor(A°, F)->Mor(A, F) by

d°(ß)(P) = M/0) - (/0) £ Mor(A, F),

where (p) = id£Mor(A, A). 5° is a homomorphism too and we get

d1d<>(f0)=0.
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If the category 6 has a final object F [5, p. 332], i.e., if there exists

an object Psuch that Mor(A, F) contains exactly one element for all

A in 6, and if Mor(P, Y) is nonempty, then 0GMor(F, F) admits

the factorization

0
Y^F^ Y

and Mor(X°, F)=Mor(P, Y) by a natural isomorphism, which ex-

plains the definition of Mor(X°, Y). In the examples in §4 we always

shall have categories with a final object.

We thus have constructed a complex of abelian groups:

(3.1) 0-► Mor(X°, F) -> Mor(X, F) -» Mor(X2, F) • • • .

We define the inhomogeneous cohomology groups of X with coeffi-

cients in F by

Hn(X, Y) = Kerôyiniô"-1,        » ^ 0.

We also can define the homogeneous cohomology groups. For this

purpose we consider the set of morphisms/GMor(Xn+1, F) with the

property

p-ifiPo,   ■   ■   ■   ,Pn))   =f(P'Po,   •   •   •  ,P-Pn)

and denote this set by Morx-(Xn+1, Y). One can easily prove that this

definition implies

x-(f(xo, ■ ■ ■ , xn)) =f(x-x0, ■ ■ ■ , x-xn)

for x, XiGMor(^4, X). Obviously Morx(Xn+1, Y) is still a commuta-

tive group. We define homomorphisms

5": Morx(Z», F) -> Mor^X^1, F),       »âl

by
n

5n(f)(p0,   ■   ■   ■   , Pn)   =   Y  (-W(P0,   ■   •   •  , Pi,   •   «   • , Pn),
¿-0

where ""* means that the projection under this sign is to be omitted.

Here again one easily checks that 5n+15n(f) =0. Thus one obtains the

complex

5° 51 Ô2
(3.2) 0 -» Mor^X, F) -^ Morx(X2, F) -> • • •

and defines homogeneous cohomology groups by

Hn(X, Y) = Ker5"+1/Im5",        n ^ 0.

Theorem 3.1. Lei (X, p) be a group and (Y, v) a unitary X-module
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and let Mor(F, X) ¿¿0. Then

H"(X, Y) ^ H"(X, Y),        n^O.

Proof. This proof is exactly the same as in the ordinary cohomol-

ogy of groups [4]; one proves that Morx(Xn+1, F)^Mor(Xn, Y) and

that the differentiation operators 5" and d" commute with these iso-

morphisms.

If now (X, p) is a semigroup with neutral element and (Y, v) is an

X-module then we consider those elements /GMor(Xn, Y) with

/(xi, • • • , x„) =0 if one of the x,GMor(^4, X) is the neutral element.

This subset forms a group Mor^X", Y) of normalized cochains for

»^1. For w = 0 we define Mori^X», F) = Mor(X°, F). If we denote

the differentiation induced by d" on these subgroups also by dn we

get the complex

d-1 d° a1
(3.3)     0-> Mori^X0, F) -> Mor"(X, F) -> Mor^X2, F) • • •

and the cohomology groups

Ên(X, Y) = KerâVImô"-1,        n è 0.

As in the classical case [4] one proves

Proposition 3.2. Let (X, p) be a semigroup with neutral element and

( Y, v) a unitary X-module. Then

Hn(X, Y) ^ Hn(X, Y),       w è 0.

4. Examples. Let us now consider two examples of this theory. In

the first example let 6 be the category of sets and set maps; then we

get the ordinary cohomology of groups.

Another example is the following, due to Harrison [ó]: For a com-

mutative ring K with identity consider the category ft of commuta-

tive X-algebras with identity and X-algebra homomorphisms which

preserve the identity. Let Q = Ct° be the dual of this category. Since

ß has finite inverse products, namely the tensor products of K-

algebras, 6 has finite direct products. Since Q, has an initial object K

(in the sense of [5]), i.e., every set of X-algebra homomorphisms

from K to any X-algebra A consists of exactly one element, 6 has a

final object K°.

Let now A be any arbitrary X-algebra in ft, (z) = Z the infinite

cyclic group with generator z, and G any commutative multiplicative

group. We denote by K(Z) and K(G) the group rings of Z and G

over K. Then the following definitions make A" into a semigroup,

K(Z)° and K(G)° into groups, and induce an ultratrivial A "-module

structure and a trivial i£(G)"-module structure on K(Z)°:
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ui:       A —* A ® A ui(a) = 1 ® a

u2: K(G) -> K(G) ® K(G) u2(g) = g®g

v. K(Z) -> K(Z) ® K(Z) v(z) = z® z

Xi: K(Z) -^ A ® K(Z) Xi(z) = 1 ® 1

X2: K(Z) -+ K(G) ® K(Z) X2(z) = 1 ® z.

We notice that all A-algebra homomorphisms from K(Z) to A are

uniquely determined by the image of the generator z of Z and that

the range for the images of z is just the group of units A* of A. So

we get Mor((A°)n, K(Z)°)^(A")*.

If we evaluate the inhomogeneous differentiation operators d", we

get Amitsur's complex ([l] and [7])

A0       A1 A2
(4.1) %(A/K): l-*K*->A*^(A ® A)* ̂  ■ ■ ■

from the ¿"-module X(Z)°. For the K(G)»-module X(Z)° we get

(4.2) £(G): 1->A*-»A(G)*-+(A(G)® K(G))*-+■ ■ •

which is Harrison's complex [6] in case G = Q/Z and A is a field,

where Q are the rational numbers and Z are the integers.

This example has already been given by Harrison in [ó], but the

definitions are repeated for the convenience of the reader.

By Theorem 3.1 we can also apply the homogeneous cohomology

theory for the complex (4.2). By evaluating the maps bn we easily

verify that this complex may be regarded as a subcomplex of Amit-

sur's complex %(K(G)/K). Indeed the subgroups which form the

complex (4.2) in the homogeneous representation consist of all ele-

ments of (K(G)n)* of the form

m

E kigl.i ®   ■   ■   ■   ®  gn.i
>-l

such that Hy_igy,<=l for all i. In case G=Q/Z and q3.iEQ/Z, we

get that &(Q/Z) is a subcomplex of %(K(Q/Z)/K) and that the last

conditions read:

m

E Hi.i ® ■ ■ ■ ® q»,i £ (K(Q/Z)«)*

such that E"-i <Zy.» = 0 Ior all *•

Thus we get a factor complex U of % = %(K(Q/Z)/K) over

& = !q(Q/Z) and an exact sequence

(4.3) 1^§^SI^U^1.
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Theorem 4.1. Hn($)^iHn-l(U),   n^l.

Proof. The exact sequence (4.3) gives rise to an exact cohomology

sequence

-> ¿P*(SQ -* H-(ll) -> Hn-l(&) -* E^iU) -+ • • • .

We want to prove i?"(2I) =0 for all n.

For Hn(K) we have iP'(Sl) = H"(K(Q/Z)/K), and K(Q/Z)
^Xim^K(G) for finite cyclic groups G and by [7, p. 345] ii'*(2I)

^Xim,H»(K(G)/K).
Now let G be a cyclic group and 1 be the unit element of G. We

define a: K-*K(G) by a(¿)=¿-l where kEK, and ß: K(G)^>K by

ß(Ykig*) — Yki< where k4EK and g the generator of G. Then as in

the proof of [9, Lemma 3.1] we have that the chain maps defined by

a and ß induce maps a*: H"(K/K) -> H"(K(G)/K) and ß*:

H»(K(G)/K)-*Hn(K/K) which are isomorphisms. So H"(K(G)/K)

= 0 for all finite cyclic groups G and thus Hn(K(Q/Z)/K) =0. By the

exact cohomology sequence (4.4) we get the desired result of Theo-

rem 4.1.

We have studied the homogeneous form of Harrison's complex.

If one tries to construct homogeneous cohomology groups for Amit-

sur's cohomology one will find that the cohomology groups vanish,

due to the more general fact that for ultratrivial module structures

the complex (3.2) vanishes.
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