ERGODIC AND MIXING PROPERTIES OF CHEBYSHEV POLYNOMIALS

R. L. ADLER AND T. J. RIVLIN

A sequence $\{T_n: n=1, 2, \cdots\}$ of, not necessarily invertible, measurable transformations on a finite measure space, (X, \mathfrak{B}, μ) , preserving the measure μ in the sense that $\mu(T_n^{-1}B) = \mu(B)$ for $B \in \mathfrak{B}$, is called *strongly mixing* if

(1)
$$\lim_{n \to \infty} \mu(T_n^{-1}A \cap B) = \frac{\mu(A)\mu(B)}{\mu(X)}$$

for $A, B \in \mathfrak{B}$.

Let X denote the interval [-1, 1], \mathfrak{B} the family of Borel subsets of X, λ Lebesgue measure and μ the equivalent measure defined by

$$\mu(B) = \frac{2}{\pi} \int_B \frac{\lambda(dx)}{\sqrt{(1-x^2)}}, \qquad B \in \mathfrak{B}.$$

The Chebyshev polynomial of degree n is defined as $T_n(x) = \cos n\theta$, where $x = \cos \theta$, $0 \le \theta \le \pi$. If we put $T_0(x) = 1/\sqrt{2}$ then it is well known that the sequence $\{T_k(x): k=0, 1, 2, \cdots\}$ is a complete orthonormal set (c.o.n.s.) in $L^2(X, \mathfrak{B}, \mu)$. Let T_n be the transformation defined by $T_n(x)$, then T_n is a measurable almost everywhere n to one mapping of X onto itself satisfying $T_n(T_m) = T_{nm}$ for $n, m = 1, 2, \cdots$, i.e. $\{T_n: n=1, 2, \cdots\}$ is a semi-group under composition. (The semi-group property is a simple consequence of the definition of the Chebyshev polynomials.)

LEMMA. T_n preserves the measure μ for $n = 1, 2, \cdots$.

PROOF. Consider the measure space $(X', \mathfrak{B}', \lambda')$ where X' is the interval $[0, \pi], \mathfrak{B}'$ the Borel field of subsets of X' and λ' Lebesgue measure on \mathfrak{B}' . Let R denote the one to one measurable mapping of X onto X' determined by $x \rightarrow x' = \operatorname{arc} \cos x$, and define S_n by $S_n = RT_nR^{-1}$. If $k\pi/n \leq x' \leq (k+1)\pi/n$, $k=0, 1, \cdots, n-1$, we observe that $S_n(x') = nx' - k\pi$, k even; $S_n(x') = -nx' + (k+1)\pi$, k odd, and thus S_n preserves Lebesgue measure for $n = 1, 2, \cdots$. A standard change of variables now reveals that

$$\int_{a}^{b} \frac{dx}{\sqrt{(1-x^{2})}} = \int_{R(a)}^{R(b)} dx', \quad -1 \leq a < b \leq 1,$$

Received by the editors March 29, 1963 and, in revised form, May 3, 1963.

which implies that $\mu(A) = \lambda'(RA)$ for $A \in \mathfrak{B}$. Therefore $\mu(T_n^{-1}A) = \lambda'(RT_n^{-1}A) = \lambda'(RT_n^{-1}R^{-1}RA) = \lambda'(S_n^{-1}RA) = \lambda'(RA) = \mu(A)$ for $A \in \mathfrak{B}$ and $n = 1, 2, \cdots$.

THEOREM. The sequence of transformations $\{T_n: n=1, 2, \cdots\}$ is strongly mixing with respect to the measure μ .

PROOF. To establish (1) it suffices to prove

(2)
$$\lim_{n\to\infty} \int_X f(T_n x)g(x)d\mu(x) = \frac{1}{\mu(X)} \int_X fd\mu(x) \cdot \int_X gd\mu(x)$$

for $f, g \in L^2(X, \mathfrak{B}, \mu)$, since if f is the characteristic function of Aand g is the characteristic function of B, (2) becomes (1). It is sufficient to establish (2) for f, g restricted to $\{T_k: k=0, 1, 2, \cdots\}$. Having done this the fact that $\{T_k: k=0, 1, 2, \cdots\}$ is a c.o.n.s. allows us to prove (2) by a standard approximation argument. In view of the orthogonality and semi-group properties of the Chebyshev polynomials (2) is easy to verify for f and g restricted to $\{T_k: k=0, 1, 2, \cdots\}$.

An application of the theorem. Let $A_n(y_2)$ be the area under the graph of $y = T_n(x)$ contained between the lines x = -1, x = 1, y = -1 and $y = y_2$ where $-1 < y_2 \le 1$. We wish to establish the existence and determine the value of

$$A(y_2) = \lim_{n \to \infty} A_n(y_2).$$

We proceed as follows: Let $g(x) = \sqrt{(1-x^2)}$ and $f(x) = y_2$, $y_2 \le x$; f(x) = x, $-1 \le x \le y_2$. Then

$$A(y_2) = 2 + \lim_{n \to \infty} \int_{-1}^{1} f(T_n(x)) dx$$

= $2 + \lim_{n \to \infty} \frac{\pi}{2} \int_X f(T_n(x)) g(x) d\mu = 2 + \frac{\pi}{2\mu(X)} \int_X f d\mu \cdot \int_X g d\mu$
= $2 + \frac{2}{\pi} \int_{-1}^{1} f(x) (1 - x^2)^{-1/2} dx$
= $2 + \frac{2}{\pi} \left[\int_{-1}^{y_2} x(1 - x^2)^{-1/2} dx + \int_{y_2}^{1} y_2(1 - x^2)^{-1/2} dx \right].$

Thus, performing these integrations we obtain

$$A(y_2) = 2 + y_2 - \frac{2}{\pi} \left[\left(1 - y_2^2\right)^{1/2} + y_2 \arcsin y_2 \right].$$

Furthermore, the limit as $n \to \infty$ of the area under $y = T_n(x)$ and between the lines $x = x_1$, $x = x_2$, y = -1 and $y = y_2$, where $-1 \le x_1 < x_2 \le 1$, $-1 < y_2 \le 1$ is $(x_2 - x_1)A(y_2)/2$. This is readily obtained by taking for g(x) the product of the characteristic function of $[x_1, x_2]$ and $(1-x^2)^{1/2}$. Therefore, the limit as $n \to \infty$ of the area under $y = T_n(x)$ and in the region bounded by the vertical lines $x = x_1$, $x = x_2$ and the continuous curves $y = y_1(x)$, $y = y_2(x)$, where $-1 \le x_1 < x_2 \le 1$, $-1 \le y_1(x) < y_2(x) \le 1$ for x in $[x_1, x_2]$ is

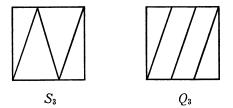
$$\frac{1}{2}\int_{x}^{x_2} \left[A(y_2(x)) - A(y_1(x))\right]dx.$$

REMARKS. It follows from the Theorem (in view of the semi-group property) that for n>1 any particular T_n is strongly mixing in the sense that

$$\lim_{k \to \infty} \mu(T_n^{-k}A \cap B) = \frac{\mu(A)\mu(B)}{\mu(X)}$$

Moreover, this implies that the T_n , n > 1, are ergodic transformations, i.e., if $T_n^{-1}A = A$, $A \in \mathfrak{B}$, then either $\mu(A) = 0$ or $\mu(A) = \mu(X)$.

It is perhaps of interest to compare the transformations S_n to the more familiar transformations $Q_n: x \rightarrow nx \pmod{1}$, defined on [0, 1], which also form a strongly mixing sequence. The accompanying diagrams illustrate the case n = 3.



The strong mixing of $\{T_n: n=1, 2, \cdots\}$ also can be deduced from the strong mixing of $\{Q_n: n=1, 2, \cdots\}$ without requiring the two semi-groups of measure preserving transformations to be spatially isomorphic in the sense that there exists an isomorphism R between (X, \mathfrak{B}, μ) and $(X', \mathfrak{B}', \lambda')$ such that $RT_nR^{-1}=Q_n$.

The authors are grateful to Professor S. Kakutani for helpful advice about the results presented here.

INTERNATIONAL BUSINESS MACHINES CORPORATION, YORKTOWN HEIGHTS