ON THE NEWTON POLYTOPE

ALVIN I. THALER

1. Introduction. The theory of the Newton polygon of a polynomial in one variable with coefficients in a complete non-Archimedean valued field is well known (see, for example, [1], [2], [3], [6]). In [4], Krasner states that one may construct an analogous Newton polytope for a polynomial in several variables. In this paper we explore the properties of the Newton polytope.

I am very grateful to Professor B. M. Dwork for his encouragement and advice.

2. **Preliminaries.** Let K be a complete field with respect to a non-Archimedean rank one valuation $x \rightarrow \operatorname{ord} x$ with value group $\mathfrak{G} \subset R$, where R denotes the additive group of real numbers. We shall assume that \mathfrak{G} is dense in R. Let \mathfrak{R} be the algebraic closure of K, and extend the valuation to \mathfrak{R} in the natural manner. As in [2], for each real number b we define $\Gamma_b = \{\xi \in \mathfrak{R} : \operatorname{ord} \xi = b\}$.

DEFINITION 1. Let $f(x) = \sum_{i=0}^{n} a_i x^i \in K[x]$. For any $\mu \in R$, $v(f; \mu) = \min_{0 \le i \le n} (\text{ord } a_i + i\mu)$.

REMARK. $v(f; \mu)$ is the Y-intercept of the lower line of support of the Newton polygon of f with slope $-\mu$.

We need the following results from the one-variable theory.

PROPOSITION 1. Let $f(x) \in K[x]$ have a zero on Γ_r . Then for any $\lambda \in \emptyset$ satisfying the inequality $\lambda \ge v(f; r)$, there exists $\xi \in \Gamma_r$ such that ord $f(\xi) = \lambda$.

- PROOF. (a) If $a_0 \neq 0$ and -r is the slope of the first side of the Newton polygon of f (i.e., if, for all r' > r, f has no zero on $\Gamma_{r'}$) then clearly $v(f; r) = \operatorname{ord} a_0$. Therefore, we need only choose $\gamma \in \Gamma_{\lambda}$ such that ord $(a_0 \gamma) = \operatorname{ord} a_0$, for then the polynomials f(x) and $f(x) \gamma$ will have identical Newton polygons. If $\lambda > v(f; r)$, then for any $\gamma \in \Gamma_{\lambda}$, ord $(a_0 \gamma) = \operatorname{ord} a_0$; if $\lambda = v(f; r)$, we choose α , $\beta \in \Gamma_0$ such that $\alpha + \beta \in \Gamma_0$ (this can be done since the residue class field of \Re contains more than two elements), and put $\gamma = a_0(1 + \alpha\beta^{-1})$.
- (b) If either $a_0 = 0$ or -r is not the slope of the first side of the Newton polygon of f, let γ be any element of Γ_{λ} , and consider the Newton diagram of $f(x) \gamma$: clearly the Newton diagram of $f(x) \gamma$ coincides with the Newton diagram of f(x), with the possible excep-

tion of the points with zero abscissa. Since $\operatorname{ord}(a_0 - \gamma) \ge v(f; r)$, -r is the slope of a side of the Newton polygon of $f(x) - \gamma$.

The following result is essentially identical to Lemma 1.2 of [2].

LEMMA 1. Let $f_1(x)$, $f_2(x)$, \cdots , $f_n(x)$ be a finite set of polynomials with coefficients in K, let $\rho \in \mathfrak{G}$. Then there exists $\xi \in \Gamma_{\rho}$ such that ord $f_i(\xi) = v(f_i; \rho)$, $i = 1, 2, \cdots, n$.

PROOF. Let $v(f_i; \rho) = M_i$, $i = 1, 2, \dots, n$; then $M_i \in \mathfrak{G}$. Therefore, we may choose $\pi_i \in \Gamma_{M_i}$, $\pi \in \Gamma_{\rho}$. For each i, we put $g_i(x) = f_i(\pi x)/\pi_i$. Then the coefficients of $g_i(x)$ are integral and the image of $g_i(x)$ in the residue class field of \mathfrak{R} is nontrivial. Since the residue class field is infinite there is a unit ξ' in \mathfrak{R} such that ord $g_i(\xi') = 0$, $i = 1, 2, \dots, n$. If we put $\xi = \pi \xi'$, we have the desired result.

3. The Newton polytope. Let $f(x, y) = \sum a_{ij}x^iy^j \in K[x, y]$. The point set $\{(i, j, \text{ ord } a_{ij})\}$ is called the *Newton diagram* of f(x, y). We define the convex closure of the Newton diagram of f(x, y) with the point $(0, 0, +\infty)$ to be the *Newton polytope* of f(x, y).

REMARK. The Newton polytope of f(x, y) is the graph of the function

$$\mathbf{\Pi}_f(X, Y) = \sup_{\mu, \nu \in R} [v(f; \mu, \nu) - \mu X - \nu Y],$$

where $v(f; \mu, \nu)$ is defined in the obvious manner generalizing Definition 1: $v(f; \mu, \nu) = \min_{i,j} (\text{ord } a_{ij} + i\mu + j\nu) \text{ (see [5, p. 49])}.$

Let $(\xi, \eta) \in \Re \times \Re$, suppose $(\xi, \eta) \in \Gamma_{\rho} \times \Gamma_{\sigma}$. The following result gives an estimate for ord $f(\xi, \eta)$ in terms of ρ , σ .

PROPOSITION 2. Let P be the lower plane of support of the Newton polytope of f(x, y), with $\partial Z/\partial X = -\rho$, $\partial Z/\partial Y = -\sigma$. Suppose $(\xi, \eta) \in \Gamma_{\rho} \times \Gamma_{\sigma}$. If only one vertex of the polytope lies on P, then only one term of $f(\xi, \eta)$ attains minimal ord, and then ord $f(\xi, \eta) = v(f; \rho, \sigma)$, the Z-axis intercept of P. Otherwise, ord $f(\xi, \eta) \ge v(f; \rho, \sigma)$.

PROOF. Let the plane P_{ij} be defined by the equation $Z + \rho X + \sigma Y = \operatorname{ord}(a_{ij}\xi^i\eta^j)$. Then the point $(i,j,\operatorname{ord} a_{ij})$ in the Newton diagram of f(x,y) lies in P_{ij} ; but $\operatorname{ord}(a_{ij}\xi^i\eta^j) < \operatorname{ord}(a_{i'j'}\xi^{i'}\eta^{i'})$ (respectively $\operatorname{ord}(a_{i'j'}\xi^{i'}\eta^j) \leq \operatorname{ord}(a_{i'j'}\xi^{i'}\eta^j)$ if and only if the intercept cut off on the Z-axis by the plane P_{ij} is less than (respectively less than or equal to) that cut off by $P_{i'j'}$. Thus, $\operatorname{ord}(a_{i0j_0}\xi^{i_0}\eta^{j_0}) = \operatorname{Min}_{i,j} \operatorname{ord}(a_{ij}\xi^{i\eta^j})$ if and only if P_{i0j_0} is the lower plane of support of the Newton polytope with $\partial Z/\partial X = -\operatorname{ord} \xi$, $\partial Z/\partial Y = -\operatorname{ord} \eta$.

COROLLARY. If (ξ, η) is a zero of f(x, y), then the lower plane of sup-

port P of the Newton polytope of f(x, y) with $\partial Z/\partial X = -\operatorname{ord} \xi$, $\partial Z/\partial Y = -\operatorname{ord} \eta$ contains an edge of the polytope.

REMARK. No distinction is made here between the plane P containing an edge or a face of the polytope.

The converse to the corollary of Proposition 2 is also valid. Thus, the Newton polytope of f(x, y) gives an explicit criterion for determining the existence of a zero of f(x, y) on $\Gamma_r \times \Gamma_s$. Before proceeding to the proof of the converse, we introduce the following notation.

Let $f(x, y) = f_0(x) + f_1(x)y + f_2(x)y^2 + \cdots + f_n(x)y^n$, $f_i(x) \in K[x]$, $i = 0, 1, 2, \cdots, n$. We shall assume that $f(x, y) \notin K[x]$, $f_n(x) \neq 0$. Let Π denote the Newton polytope of f(x, y). For $\rho \in \mathfrak{G}$, let Λ_ρ be the convex closure in the YZ-plane of the point set $\{(0, j, v(f_j; \rho)): j = 0, 1, 2, \cdots, n\}$ with the point $(0, 0, +\infty)$. For $\xi \in K$, let Λ_ξ be the convex closure in the YZ-plane of the point set $\{(0, j, \operatorname{ord} f_j(\xi)): j = 0, 1, 2, \cdots, n\}$ with the point $(0, 0, +\infty)$. We observe that Λ_ξ is the Newton polygon of the polynomial $g_{\xi}(y) = \sum f_j(\xi)y^j$, and that if ord $\xi = \rho$, then no point of Λ_ρ lies below Λ_ξ . Let Π_j denote the Newton polygon of the polynomial $f_j(x)$ in the plane Y = j, and finally let $f_j(\rho)$ be the lower line of support of Π_j with slope $-\rho$ in the plane Y = j.

PROPOSITION 3. Let $f(x, y) \in K[x, y]$, let $r, s \in \mathfrak{G}$. Suppose P_{rs} is the lower plane of support of Π , the Newton polytope of f(x, y), with equation Z+rX+sY+d=0. If P_{rs} contains an edge of Π , then there is a point $(\xi, \eta) \in \Gamma_r \times \Gamma_s$ such that $f(\xi, \eta) = 0$.

PROOF. Suppose P_{rs} contains an edge of Π with direction numbers (α, β, γ) . Since P_{rs} cannot contain a vertical line, either α or β is different from zero. We may assume, with no loss of generality, that $\beta \neq 0$. Then a pair of points $p_1 = (i_1, j_1, \text{ ord } a_{i_1j_1})$, $p_2 = (i_2, j_2, \text{ ord } a_{i_2j_2})$ of the Newton diagram of f(x, y) is on P_{rs} , with $j_1 \neq j_2$. Since P_{rs} is a lower plane of support of Π containing p_1 and p_2 , with $\partial Z/\partial X = -r$, it follows that $l_{j_1}(r)$ and $l_{j_2}(r)$ are in P_{rs} . By Lemma 1, we may choose $\xi \in \Gamma_r$ such that ord $f_{j_1}(\xi) = v(f_{j_1}; r)$, ord $f_{j_2}(\xi) = v(f_{j_2}; r)$. Thus, the points $q_1 = (0, j_1, \text{ ord } f_{j_1}(\xi))$ and $q_2 = (0, j_2, \text{ ord } f_{j_2}(\xi))$ of the Newton diagram of $g_{\xi}(y)$ are in P_{rs} , and are therefore on a side of Λ_{ξ} which lies in P_{rs} (since no point of Λ_{ξ} can lie below the intersection of P_{rs} with the YZ-plane). But since Λ_{ξ} lies in the (X=0)-plane, we see that the side of Λ_{ξ} determined by q_1 , q_2 has slope $\partial Z/\partial Y = -s$; therefore, the polynomial $g_{\xi}(y)$ has a root $\eta \in \Gamma_s$. Hence, $(\xi, \eta) \in \Gamma_r \times \Gamma_s$ and $f(\xi, \eta) = 0$.

We summarize these results in

THEOREM 1. Let $f(x, y) \in K[x, y]$, let $r, s \in \mathfrak{G}$, and let P_{rs} be the lower plane of support of the Newton polytope of f(x, y) with $\partial Z/\partial X = -r$, $\partial Z/\partial Y = -s$. There is a zero (ξ, η) of f(x, y) such that ord $\xi = -r$, ord $\eta = -s$ if, and only if, the plane P_{rs} contains an edge of the polytope.

4. Distinguished values.

DEFINITION 2. Let D be a subset of $\Re \times \Re$, let r (respectively s) be a real number. We say that r is x-distinguished on D (respectively, s is y-distinguished on D) if there are infinitely many $s \in \mathfrak{G}$ (respectively, infinitely many $r \in \mathfrak{G}$) such that $D \cap (\Gamma_r \times \Gamma_s) \neq \emptyset$.

PROPOSITION 4. Let $f(x, y) \in K[x, y]$, suppose $f(x, y) \neq 0$; let $D = V(f) = \{(\xi, \eta) \in \Re \times \Re : f(\xi, \eta) = 0\}$. The set of real numbers which are x-distinguished on D (respectively, y-distinguished on D) is finite.

PROOF. Let $f(x, y) = f_0(x) + f_1(x)y + f_2(x)y^2 + \cdots + f_n(x)y^n$, $f_i(x) \in K[x]$, $0 \le i \le n$. Since $f(x, y) \ne 0$, not all the polynomials $\{f_i(x)\}$ are zero. Let $\mathfrak F$ be the subset of $\{f_i(x): 0 \le i \le n\}$ consisting of those polynomials which are nonzero, and let $\mathfrak R$ be the set of values of zeros of polynomials in $\mathfrak F$, i.e., $r \in \mathfrak R$ if there is a pair $(f, \xi) \in \mathfrak F \times \Gamma_r$ such that $f(\xi) = 0$. Clearly $\mathfrak R$ is a finite set. Suppose $r' \notin \mathfrak R$. Then for $\xi \in \Gamma_{r'}$, the Newton diagram of $g_{\xi}(y) = f(\xi, y)$ depends only on ord ξ . Therefore, as ξ runs through $\Gamma_{r'}$, there is only a finite number of $s \in \mathfrak G$ such that g_{ξ} has a zero on Γ_s . Therefore if $r' \notin \mathfrak R$, r' is not x-distinguished on D.

The set of real numbers which are distinguished for a given polynomial is determined by the Newton polytope of that polynomial. In fact, we shall prove

THEOREM 2. Let $f(x, y) \in K[x, y]$, suppose $f(0, 0) \neq 0$. Then ρ is x-distinguished on V(f) if, and only if, there is an edge of the Newton polytope of f(x, y) with direction numbers $(1, 0, -\rho)$.

The proof of Theorem 2 will be a trivial consequence of Propositions 5 and 6.

LEMMA 2. Let $f(x, y) = f_0(x) + f_1(x)y + f_2(x)y^2 + \cdots + f_n(x)y^n \in K[x, y]$, suppose $f(x, y) \notin K[x]$, $f(0, 0) \neq 0$. Let $\rho \in \mathfrak{G}$, and let Λ_{ρ} , Π_{j} , $0 \leq j \leq n$, be as previously defined. If the point $(0, j_0, v(f_{j_0}; \rho))$ is on Λ_{ρ} , then there is a vertex $(i_0, j_0, \text{ ord } a_{i_0j_0})$ of Π_{j_0} which is on the Newton polytope of f(x, y).

PROOF. Suppose the point $(0, j_0, v(f_{j_0}; \rho))$ is on the side of Λ_ρ with vertices $(0, j_1, v(f_{j_1}; \rho))$, $(0, j_2, v(f_{j_2}; \rho))$, and suppose $j_1 < j_2$. Let P be the plane determined by the (parallel) lines $l_{j_1}(\rho)$ and $l_{j_2}(\rho)$. Then certainly $l_{j_0}(\rho)$ lies in P. It remains only to be shown that P is a

lower plane of support of the polytope. Suppose not; then there is a point $(i', j', \text{ ord } a_{i'j'})$ below P. Hence $(0, j', v(f_{j'}; \rho))$ lies below the line $P \cap (X = 0)$. This contradicts convexity of Λ_{ρ} in the YZ-plane.

COROLLARY. Using the above notation, if $(0, j_0, v(f_{j_0}; \rho))$ is on Λ_{ρ} , and if ord $f_{j_0}(\xi)$ has more than one value for $\xi \in \Gamma_{\rho}$, then a side of Π_{j_0} is on the polytope of f(x, y).

PROPOSITION 5. If $\rho \in \emptyset$ is x-distinguished on V(f), then there is an edge of the Newton polytope of f with direction numbers $(1, 0, -\rho)$.

PROOF. For $\xi \in \Gamma_{\rho}$, we let $g_{\xi}(y)$, Λ_{ξ} , Λ_{ρ} be defined as before. Since ρ is x-distinguished on V(f), the set of slopes of sides of the polygons $\{\Lambda_{\xi}: \xi \in \Gamma_{\rho}\}$ is infinite. Consider the set of non-negative integers j with the property that $(0, j, v(f_{j}; \rho))$ is a vertex of Λ_{ρ} and $\{\operatorname{ord} f_{j}(\xi): \xi \in \Gamma_{\rho}\}$ has more than one element. If this set were empty, it would follow that $\Lambda_{\rho} = \Lambda_{\xi}$ for each $\xi \in \Gamma_{\rho}$, contradicting the hypothesis. Let j_{0} denote the smallest integer of this set.

By the previous corollary, $l_{j_0}(\rho)$ contains a side of Π_{j_0} , and this side is on Π . To complete the proof of Proposition 5, we need only show that this side of Π_{j_0} is indeed an edge of the polytope. If j_0 is either 0 or n, this is certainly the case. Otherwise, we may choose integers j_1, j_2 such that $(0, j_1, v(f_{j_1}; \rho))$, $(0, j_0, v(f_{j_0}; \rho))$ and $(0, j_2, v(f_{j_2}; \rho))$ are distinct adjacent vertices of Λ_{ρ} , with $0 \le j_1 < j_0 < j_2 \le n$. Let P_1 be the plane determined by the lines $l_{j_0}(\rho)$, $l_{j_1}(\rho)$, and let P_2 be the plane determined by the lines $l_{j_0}(\rho)$, $l_{j_2}(\rho)$. By the concluding argument of Lemma 2, P_1 and P_2 are lower planes of support of the Newton polytope of f(x, y). By choice of j_1 and j_2 , they are distinct, and their intersection is the line $l_{j_0}(\rho)$. This completes the proof.

PROPOSITION 6. If there is an edge of the Newton polytope of f(x, y) with direction numbers $(1, 0, -\rho)$, then $\rho \in \mathfrak{G}$ and ρ is x-distinguished on V(f).

Note. It is not necessary to assume here that $\rho \in \emptyset$.

PROOF. We again write $f(x, y) = \sum_{j=1}^{n} f_j(x) y^j$; what we are required to show is that, if there is a polynomial $f_i(x)$ such that $f_i(x)$ has a zero on Γ_ρ and, moreover, that the side of Π_i of slope $-\rho$ is an edge of the Newton polytope Π of f(x, y), then ρ is x-distinguished on V(f). That is, we must show that the set $\mathcal{L}_\rho = \{\lambda : -\lambda \text{ is the slope of a side of } \Lambda_\xi$, for some $\xi \in \Gamma_\rho$ is infinite. (We observe that $\rho \in \mathfrak{G}$, from the one-variable Newton polygon theory applied to $f_i(x)$.)

Case 1. For some k, $0 \le k \le n$, f_k has no zeros on Γ_p . Let k_0 be the smallest such k. Then either $k_0 = 0$ or $k_0 > 0$.

(1a) Suppose $k_0 = 0$. Let i_0 be the smallest integer with the property that a side of Π_{i_0} of slope $-\rho$ is an edge of Π . Then $(0, i_0, v(f_{i_0}; \rho))$ is a vertex of Λ_{ρ} . Moreover, $i_0 > 0$, since f_0 has no zeros on Γ_{ρ} .

Let the vertices of Λ_{ρ} in the YZ-plane have Y-coordinates $0 = \alpha_0 < \alpha_1 < \cdots < \alpha_t$, let $i_0 = \alpha_t$. Then for all $\xi \in \Gamma_{\rho}$, the polygons Λ_{ξ} and Λ_{ρ} agree in vertices whose Y-coordinates are $\alpha_0, \alpha_1, \cdots, \alpha_{t-1}$.

FIGURE 1. Newton polygon of Λ_{ρ} .

Consider the set \mathcal{Z} of Z-coordinates of points on the line \overline{EG} in Figure 1 which are also in $\mathfrak{G}.^1$ Since \mathfrak{G} is dense in R, the set \mathcal{Z} is infinite. But E has coordinates $(i_0, v(f_{i_0}; \rho))$, whence from Proposition 1, we may choose, for each $r \in \mathcal{Z}$, an element $\xi_r \in \Gamma_\rho$ such that ord $f_{i_0}(\xi_r) = r$. Let Ξ be a set of representatives of \mathcal{Z} in Γ_ρ : if $\xi \in \Xi$ then ord $f_{i_0}(\xi) \in \mathcal{Z}$, and $\xi, \xi' \in \Xi$, $\xi \neq \xi'$ implies ord $f_{i_0}(\xi) \neq \text{ord } f_{i_0}(\xi')$. The definition of \mathcal{Z} guarantees that $(\alpha_i, \text{ ord } f_{\alpha_i}(\xi))$ is a vertex of Λ_ξ for any $\xi \in \Xi$.

For $\alpha_{i-1} \leq \nu \leq \alpha_i - 1$, we define the sets $\Xi_{\nu}^{(1)} = \{\xi \in \Xi : (\nu, \text{ ord } f_{\nu}(\xi)), (i_0, \text{ ord } f_{i_0}(\xi)) \text{ are vertices of a side of } \Lambda_{\xi} \}$. Then, since $\Xi = \bigcup_{\alpha_{i-1} \leq \nu \leq \alpha_i - 1} \Xi_{\nu}^{(1)}$, we may choose ν_1 to be the largest integer with the property that $\nu_1 < i_0$ and $\Xi_{\nu_1}^{(1)}$ is an infinite set. Let $\mathfrak{T}_1 = \{\text{ord } f_{\nu_1}(\xi) : \xi \in \Xi_{\nu_1}^{(1)} \}$. If \mathfrak{T}_1 is finite, then the set $\{\text{ord } f_{\nu_1}(\xi) - \text{ord } f_{i_0}(\xi) : \xi \in \Xi_{\nu_1}^{(1)} \}$ is infinite, whence so is \mathfrak{L}_{ρ} . Otherwise we define, for $\alpha_{i-1} \leq \nu < \nu_1$, the sets $\Xi_{\nu}^{(2)} = \{\xi \in \Xi_{\nu_1}^{(1)} : (\nu, \text{ ord } f_{\nu}(\xi)), (\nu_1, \text{ ord } f_{\nu_1}(\xi)) \text{ are vertices of a side of } \Lambda_{\xi} \}$, and choose ν_2 to be the largest integer with the property that $\nu_2 < \nu_1$ and $\Xi_{\nu_2}^{(2)}$ is an infinite set. We then define $\mathfrak{T}_2 = \{\text{ord } f_{\nu_2}(\xi) : \xi \in \Xi_{\nu_2}^{(2)} \}$. Proceeding in this manner, we define a sequence of integers $\nu_1 > \nu_2 > \cdots > \nu_m \geq \alpha_{i-1}$, and a corresponding sequence of sets $\mathfrak{T}_1, \mathfrak{T}_2, \cdots, \mathfrak{T}_m$. If \mathfrak{T}_i is finite for some i, then (1a) is proved. Otherwise, we may assume that m is such that $\nu_m = \alpha_{i-1}$; but then, $\mathfrak{T}_m = \{\text{ord } f_{\alpha_{i-1}}(\xi) : \xi \in \Xi_{\alpha_{i-1}}^{(m)} \} = \{\nu(f_{\alpha_{i-1}}; \rho)\}$, which is certainly finite. Thus, case (1a) is proved.

¹ If $\alpha_i = n$, let $\beta = \{\lambda \in \mathfrak{G} : \text{ ord } \lambda \geq v(f_n; \rho)\}$.

(1b) Suppose $k_0 > 0$. Then f_0 has a zero on Γ_ρ . Hence, by Proposition 1, we may choose a sequence $\{\xi_h\} \subset \Gamma_\rho$ such that ord $f_0(\xi_h) \to \infty$ as $h \to \infty$. If ρ is not x-distinguished on V(f), we must then have ord $f_1(\xi_h) \to \infty$ as $h \to \infty$, \cdots , ord $f_{k_0-1}(\xi_h) \to \infty$ as $h \to \infty$. But then, for h sufficiently large, the point $(k_0, \operatorname{ord} f_{k_0}(\xi_h)) = (k_0, v(f_{k_0}; \rho))$ is on Λ_{ξ_h} .

For $0 \le \nu < k_0$, we let $\mathcal{E}_{\nu} = \{h \in \mathbb{Z} : (\nu, \text{ ord } f_{\nu}(\xi_h)), (k_0, \text{ ord } f_{k_0}(\xi_h)) \text{ are vertices of a side of } \Lambda_{\xi_h}\}$. Then for some ν_0 , the set \mathcal{E}_{ν_0} is infinite, whence the set of slopes

$$\left\{\frac{v(f_{k_0};\rho)-\operatorname{ord} f_{\nu_0}(\xi_h)}{k_0-\nu_0}:h\in\mathfrak{E}_{\nu_0}\right\}$$

is infinite, whence ρ is x-distinguished on V(f).

Case 2. $f_j(x)$ has a zero on Γ_ρ for each j, $0 \le j \le n$. If there is an $\eta \in \Gamma_\rho$ such that $f_j(\eta) = 0$ for each j, $0 \le j \le n$, then certainly ρ is x-distinguished on V(f). Therefore, we may assume that no root of one of the f_j is a root of all the f_j .

Let f_0 have the zeros $\eta_1, \eta_2, \dots, \eta_w$ on Γ_ρ . Let j_0 be the smallest integer with the property that, for some i_0 , $1 \le i_0 \le w$, $f_{j_0}(\eta_{i_0}) \ne 0$. Choose a neighborhood N of η_{i_0} in \Re such that $\{\operatorname{ord} f_{j_0}(\xi): \xi \in N\}$ is bounded. Since the valuation of \Re is dense, we may choose a sequence $\{\xi_h\} \subset N$ such that $\operatorname{ord} f_k(\xi_h) \to \infty$, $h \to \infty$, for $k = 0, 1, 2, \dots, j_0 - 1$. But $\{\operatorname{ord} f_{j_0}(\xi_h): h = 1, 2, \dots\}$ is bounded; therefore, for h sufficiently large, the point $(j_0, \operatorname{ord} f_{j_0}(\xi_h))$ is on Λ_{ξ_h} .

For $0 \le \nu < j_0$, let $\mathcal{E}_{\nu} = \{h \in \mathbb{Z} : (\nu, \text{ ord } f_{\nu}(\xi_h)), (j_0, \text{ ord } f_{\nu_0}(\xi_h)) \text{ are vertices of a side of } \Lambda_{\xi_h}\}$. Then for some ν_0 , \mathcal{E}_{ν_0} is infinite; therefore, the set of slopes

$$\left\{\frac{\operatorname{ord} f_{j_0}(\xi_h)-\operatorname{ord} f_{\nu_0}(\xi_h)}{j_0-\nu_0}:\,h\in \operatorname{\varepsilon}_{\nu_0}\right\}$$

is infinite, whence ρ is x-distinguished on V(f).

REFERENCES

- 1. E. Artin, Algebraic numbers and algebraic functions. I, Mimeographed notes, Princeton University, Princeton, N. J., 1951.
- 2. B. Dwork, On the zeta function of a hypersurface, Inst. Hautes Études Sci. Publ. Math. No. 12 (1962), 5-68.
 - 3. M. Krasner, Théorie des fonctions, C. R. Acad. Sci. Paris 222 (1946), 37-40.
 - 4. ——, Théorie des fonctions, C. R. Acad. Sci. Paris 222 (1946), 582.
- 5. M. Lazard, Les zéros des fonctions analytiques d'une variable sur un corps valué complet, Inst. Hautes Études Sci. Publ. Math. No. 14 (1962), 47-75.
- 6. A. Ostrowski, Untersuchungen zur arithmetischen Theorie der Körper, Math. Z. 39 (1934-35), 269-320.

JOHNS HOPKINS UNIVERSITY