ON THE NEWTON POLYTOPE
ALVIN I. THALER

1. Introduction. The theory of the Newton polygon of a polynomial
in one variable with coefficients in a complete non-Archimedean
valued field is well known (see, for example, [1], [2], [3], [6]). In
[4], Krasner states that one may construct an analogous Newton
polytope for a polynomial in several variables. In this paper we ex-
plore the properties of the Newton polytope.

I am very grateful to Professor B. M. Dwork for his encouragement
and advice.

2. Preliminaries. Let K be a complete field with respect to a non-
Archimedean rank one valuation x—ord x with value group ® CR,
where R denotes the additive group of real numbers. We shall assume
that © is dense in R. Let & be the algebraic closure of K, and extend
the valuation to & in the natural manner. As in [2], for each real
number b we define I'y= {EE.@: ord £=b}.

DEFINITION 1. Let f(x) = Y roax'CK [x]. For any uER, v(f; u)
=Minos;5n (Ol’d a.-+iy).

REMARK. v(f; u) is the Y-intercept of the lower line of support of
the Newton polygon of f with slope —pu.

We need the following results from the one-variable theory.

ProrosITiON 1. Let f(x) €K [x] have a zero on T . Then for any N\ES
satisfying the inequality N2v(f; r), there exists EET, such that ord f(£)

ProoF. (a) If ao£0 and —r is the slope of the first side of the New-
ton polygon of f (i.e., if, for all #' >r, f has no zero on T',+) then clearly
o(f; r)=ord ao. Therefore, we need only choose Y&TI'\ such that
ord (ap—7)=ord a,, for then the polynomials f(x) and f(x) —vy will
have identical Newton polygons. If A>u(f; ), then for any y&T\,
ord (@o—7)=ord ao; if N=v(f; 7), we choose a, BET; such that
a+BET, (this can be done since the residue class field of & contains
more than two elements), and put v=a,(14+a81).

(b) If either ay=0 or —r is not the slope of the first side of the
Newton polygon of f, let ¥ be any element of T',, and consider the
Newton diagram of f(x) —+: clearly the Newton diagram of f(x) —v
coincides with the Newton diagram of f(x), with the possible excep-
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tion of the points with zero abscissa. Since ord(ao—7v) 2v(f; r), —ris
the slope of a side of the Newton polygon of f(x) —+.
The following result is essentially identical to Lemma 1.2 of [2].

LeEMMA 1. Let fi(x), fo(x), « - -, fu(x) be a finite set of polynomials
with coefficients in K, let p&®. Then there exists £ET', such that
ord fi(§) =v(fi; p), 1=1,2, - - - , m.

Proor. Let v(fi; p) =M, 1=1, 2, - - -, n; then M;E®. Therefore,
we may choose m; &Iy, m&T,. For each 7, we put g,(x) =f:(rx) /7
Then the coefficients of g;(x) are integral and the image of g;(x) in
the residue class field of ® is nontrivial. Since the residue class field
is infinite there is a unit £ in & such that ord g;(¢’)=0,4=1,2, - - -,
n. If we put £=x£’, we have the desired result.

3. The Newton polytope. Let f(x, )= > a;x'y/EK|[x, y]. The
point set { (3, j, ord a;;) } is called the Newton diagram of f(x, y). We
define the convex closure of the Newton diagram of f(x, y) with the
point (0, 0, 4+ «) to be the Newton polytope of f(x, y).

REMARK. The Newton polytope of f(x, y) is the graph of the func-
tion

HI(X) Y) = Sup [v(f’ My v) — uX — ”Y])
u,veR
where v(f; u, ») is defined in the obvious manner generalizing Defini-
tion 1: v(f; g, ») =Min,,; (ord a;;+iu+jv) (see [5, p. 49]).

Let (¢ n)ERXRK, suppose (£, n) EL,XT,. The following result

gives an estimate for ord f(£, 5) in terms of p, .

PROPOSITION 2. Let P be the lower plane of support of the Newton
polytope of f(x, v), with dZ/0X = —p, 0Z/0Y = —a. Suppose (&, 1)
€T, XT . If only one vertex of the polytope lies on P, then only one term
of f(& n) attains minimal ord, and then ord f(§, ) =v(f; p, o), the
Z-axis intercept of P. Otherwise, ord f(§, ) Zv(f; p, o).

Proor. Let the plane P;; be defined by the equation Z+pX+c¥
=ord(a;¢*7). Then the point (4, j, ord a;) in the Newton diagram of
f(x, ) lies in Py; but ord(aiitn’) <ord(ai;£En'") (respectively
ord(a;&*7) Sord(ay£¥n'")) if and only if the intercept cut off on the
Z-axis by the plane P;; is less than (respectively less than or equal
to) that cut off by Py j. Thus, ord(ai,jf®n’) = Min;,; ord(a:&n?) if
and only if P, is the lower plane of support of the Newton polytope
with 0Z/0X = —ord £, 0Z/0Y = —ord .

CoRroLLARY. If (£, 7) is a zero of f(x, y),‘then the lower plane of sup-
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port P of the Newton polytope of f(x, ) with 0Z/0X = —ord &, 0Z/3Y
= —ord 7 contains an edge of the polytope.

REMARK. No distinction is made here between the plane P con-
taining an edge or a face of the polytope.

The converse to the corollary of Proposition 2 is also valid. Thus,
the Newton polytope of f(x, y) gives an explicit criterion for deter-
mining the existence of a zero of f(x, ¥) on I', XT',. Before proceeding
to the proof of the converse, we introduce the following notation.

Let f(x, y)=fo®)+fi(x)y+f@)y>+ - - - Hfal@)y, filx) EK[x],
i=0,1,2, - - -, n. We shall assume that f(x, y) €K [x], fa(x) #0. Let
IT denote the Newton polytope of f(x, y). For p&®, let A, be the
convex closure in the YZ-plane of the point set {(0, j, v(f;; p)):

j=0,1,2,-.., n} with the point (0, 0, + «). For £EK, let A; be
the convex closure in the YZ-plane of the point set {(0, 7, ord f;(£)):
j=0,1,2,---, n} with the point (0, 0, + «). We observe that A;

is the Newton polygon of the polynomial gi(y) = D_f;(£)y’, and that
if ord £=p, then no point of A, lies below A: Let II; denote the
Newton polygon of the polynomial f;(x) in the plane ¥ =3, and finally
let /;(p) be the lower line of support of II; with slope —p in the plane
Y=j.

PROPOSITION 3. Let f(x, y) €K [x, v], let r, SE®. Suppose P, is the
lower plane of support of XL, the Newton polytope of f(x, ¥), with equa-
tion Z+rX+sY+d=0. If P,, contains an edge of II, then there is a
point (£, n) ST, XT, such that f(&, 1) =0.

ProoF. Suppose P,, contains an edge of IT with direction numbers
(o, B, 7). Since Py, cannot contain a vertical line, either a or f is
different from zero. We may assume, with no loss of generality, that
B#0. Then a pair of points p1= (41, j1, ord @sy;,), P2= (43, j2, ord @iyj,) Of
the Newton diagram of f(x, v) is on P,, with ji#js. Since Py, is a
lower plane of support of IT containing p; and p,, with 0Z/0X = —7,
it follows that /;,(r) and I;,(r) are in P,,. By Lemma 1, we may choose
(€T, such that ord f;,(§) =v(fi,; 1), ord f;,(§) =v(fi,; 7). Thus, the
points ¢;= (0, j1, ord f;,(¥)) and g2= (0, js, ord f;,(§)) of the Newton
diagram of g¢(y) are in P, and are therefore on a side of A; which
lies in P,, (since no point of A; can lie below the intersection of P,,
with the YZ-plane). But since A; lies in the (X =0)-plane, we see
that the side of A; determined by ¢, g2 has slope dZ/0Y = —s; there-
fore, the polynomial g:(y) has a root n&T',. Hence, (¢, 1) €T, XT, and
f(gr 7) =0.

We summarize these results in
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THEOREM 1. Let f(x, y) EK [x, y], let 7, sSES, and let P,, be the lower
plane of support of the Newton polytope of f(x, v) with 0Z/dX = —r,
0Z/3Y = —s. There is a zero (¢, 1) of f(x, y) such that ord £= —7,
ord n= —s if, and only if, the plane P,, contains an edge of the polytope.

4. Distinguished values.

DEFINITION 2. Let D be a subset of X &, let 7 (respectively s) be
a real number. We say that r is x-distinguished on D (respectively,
s is y-distinguished on D) if there are infinitely many s&@® (respec-
tively, infinitely many rE@®) such that DT, XT,) = J.

PROPOSITION 4. Let f(x, y) EK [x, y], suppose f(x, y) #0; let D= V(f)
={¢E NERXK:fE n) =0}. The set of real numbers which are x-
distinguished on D (respectively, y-distinguished on D) is finite.

Proor. Let f(x, y) =fo(x) +fi(x)y+fe(x)y*+ - - - +falx)y", fi(x)
€K|x], 0=i=n. Since f(x, y)#0, not all the polynomials {fi(x)}
are zero. Let § be the subset of { fi(x):0=1 én} consisting of those
polynomials which are nonzero, and let i be the set of values of
zeros of polynomials in §, i.e., rER if there is a pair (f, ) EFXT,
such that f(£) =0. Clearly & is a finite set. Suppose ' ER. Then for
£¢€T,,, the Newton diagram of g:(y) =f(¢, v) depends only on ord &.
Therefore, as £ runs through T',., there is only a finite number of s&®
such that g; has a zero on T',. Therefore if r' &R, 7’ is not x-distin-
guished on D.

The set of real numbers which are distinguished for a given poly-
nomial is determined by the Newton polytope of that polynomial.
In fact, we shall prove

THEOREM 2. Let f(x, y)EK [x, y], suppose f(0, 0) 0. Then p is
x-distinguished on V(f) if, and only if, there is an edge of the Newton
polytope of f(x, y) with direction numbers (1, 0, —p).

The proof of Theorem 2 will be a trivial consequence of Proposi=
tions 5 and 6.

Lemma 2. Let f(x, y) = fo(x) + fi(x)y + fa(x)y* + - - - + fal@)y”
€K |x, y], suppose f(x, y) €K [x], (0, 0) 0. Let pE®, and let A,, 11,
0=j<mn, be as previously defined. If the point (0, jo, v(fi,; p)) is on A,,
then there is a vertex (1o, jo, ord ayy,) of IL;, which is on the Newton

polytope of f(x, 3).

ProoF. Suppose the point (0, jo, #(fj,; p)) is on the side of A, with
vertices (0, j1, 2(fi,; ), (0, f2, v(fi,; p)), and suppose j1 <js. Let P be
the plane determined by the (parallel) lines /;(p) and I;,(p). Then
certainly /;,(p) lies in P. It remains only to be shown that P is a
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lower plane of support of the polytope. Suppose not; then there is a
point (¢, j/, ord a.j) below P. Hence (0, 5/, v(fj:; p)) lies below the
line PN\(X =0). This contradicts convexity of A, in the YZ-plane.

COROLLARY. Using the above notation, if (0, jo, v(fis; p)) is on A,,
and if ord f;,(£) has more than one value for EET,, then a side of II;, is

on the polytope of f(x, ¥).

PROPOSITION 5. If pE® is x-distinguished on V(f), then there is an
edge of the Newton polytope of f with direction numbers (1, 0, —p).

Proor. For ¢ET,, we let g:(¥), Ay, A, be defined as before. Since p
is x-distinguished on V(f), the set of slopes of sides of the polygons
{AE: EEI‘,} is infinite. Consider the set of non-negative integers j with
the property that (0, j, v(f;; p)) is a vertex of A, and {ord fi€): EEI‘,}
has more than one element. If this set were empty, it would follow
that A,=A; for each £¢E€T,, contradicting the hypothesis. Let jo de-
note the smallest integer of this set.

By the previous corollary, l;(p) contains a side of IIj,, and this
side is on II. To complete the proof of Proposition 5, we need only
show that this side of II;, is indeed an edge of the polytope. If j; is
either 0 or 7, this is certainly the case. Otherwise, we may choose
integersjl,jz such that (O!jlr v(fix;p))v (Ovj()r v(fio;p)) and (Ovj2! v(fiz;p))
are distinct adjacent vertices of A,, with 0 <37, <jo<j:=n. Let P; be
the plane determined by the lines ;i(p), /;,(p), and let P, be the plane
determined by the lines ;,(p), /;,(p). By the concluding argument of
Lemma 2, P, and P; are lower planes of support of the Newton poly-
tope of f(x, ¥). By choice of j; and j,, they are distinct, and their inter-
section is the line /;,(p). This completes the proof.

PROPOSITION 6. If there is an edge of the Newton polytope of f(x, )
with direction numbers (1, 0, —p), then pE® and p is x-distinguished

on V(f).

Note. It is not necessary to assume here that p&E®.

ProoF. We again write f(x, ) = 27, fi(x)y’; what we are required
to show is that, if there is a polynomial f;(x) such that f;(x) has a zero
on T, and, moreover, that the side of II; of slope —p is an edge of the
Newton polytope II of f(x, ¥), then p is x-distinguished on V(f). That
is, we must show that the set €,= {\: —\ is the slope of a side of A,
for some £€I‘,,} is infinite. (We observe that p&(, from the one-
variable Newton polygon theory applied to f;(x).)

Case 1. For some k, 0=k =<n, fi. has no zeros on T',. Let %k, be the
smallest such k. Then either k=0 or k,>0.
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(1a) Suppose ky=0. Let 4, be the smallest integer with the prop-
erty that a side of IT;, of slope —p is an edge of IL. Then (0, %o, 2(fs,; p))
is a vertex of A,. Moreover, 7,>0, since f, has no zeros on T',.

Let the vertices of A, in the YZ-plane have Y-coordinates 0=q
<on< - -+ <Lay, let io=a.. Then for all ¢€T,, the polygons A; and

A, agree in vertices whose Y-coordinates are ay, a1, * * * , @1
Z
+
\ < > & ~l /X 0( ! jY
RS

RPN ——— S
e e - e — e~

()]

E

F1Gure 1. Newton polygon of A,.

Consider the set 8 of Z-coordinates of points on the line EG in
Figure 1 which are also in &.! Since © is dense in R, the set 3 is in-
finite. But E has coordinates (4o, v(fi; p)), whence from Proposition 1,
we may choose, for each r&3, an element £ ET', such that ord f;,(£,)
=r. Let & be a set of representatives of 8 in T',: if {&F then ord f;,(£)
€38, and £, £’ €E, ¢’ implies ord f;,(£) #ord f;,(¢’). The definition
of B guarantees that (a,, ord fo (£)) is a vertex of A; for any £EE.

For a_1<v<a.—1, we define the sets V= {26: (v, ord f,(%)),
(10, ord fi(£)) are vertices of a side of Ag} Then, since
E=VUa,_isrsa,—1 2 ED we may choose v to be the largest integer with the
property that v; <%, and ,.,f,l) is an infinite set. Let ;= {ord Fn(®):
t€ED). If T,is finite, then the set {ord f,,(8) — ord fi,(): EEED } is
infinite, whence so is ,. Otherwise we define, for @, <v <»,, the sets
ED = {£€ED: (v, ord f,(£)), (vs, ord f,,(§)) are vertices of a side of A},
and choose »; to be the largest integer with the property that vo <y,
and E2 is an infinite set. We then define ,= {ord f,,(8): .EEES?}.
Proceeding in this manner, we define a sequence of integers vy >v,
> .+ -+ >p,2a.1, and a corresponding sequence of sets Ty, Ty, + ¢ -,
Tn If T, is finite for some ¢, then (1a) is proved. Otherwise, we may
assume that m is such that v,=a.,_;; but then, Tpn= {ord fayi(E):
£€,".,"§,":’_l} = {v( foyers p)}, which is certainly finite. Thus, case (1a) is

proved.
VIf ay=mn, let 3={AEG: ord A=t(fa; p)}.
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(1b) Suppose k,>0. Then f, has a zero on T',. Hence, by Proposi-
tion 1, we may choose a sequence {Eh} CT, such that ord fo(£s)—
as h— . If p is not x-distinguished on V(f), we must then have
ord fi(ks)— e ash— o, -+« , ord fy,—1(€s) — © as h— ». But then, for
h sufficiently large, the point (%o, ord fi,(€s)) = (Ro, (fr,; p)) is on Ag,.

For 0=y <k, we let §,= {hEZ: (v, ord f,(£4)), (o, ord fi,(és)) are
vertices of a side of As,}. Then for some v, the set &, is infinite,
whence the set of slopes

{'v(fko; p) — ord f,,(€x)

ko — vo

thE 8.0}

is infinite, whence p is x-distinguished on V().

Case 2. fi(x) has a zero on T', for each j, 0<j=<n. If there is an
nET, such that f;(n) =0 for each j, 0=j=<n, then certainly p is x-
distinguished on V(f). Therefore, we may assume that no root of one
of the f; is a root of all the f;.

Let f, have the zeros 71, 12, - * +, 7w on T',. Let jo be the smallest
integer with the property that, for some %o, 1<% =Zw, fj,(n:) #O0.
Choose a neighborhood N of ;, in & such that {ord f;,(£): §EN }is
bounded. Since the valuation of & is dense, we may choose a sequence
{E;.} C N such that ord fi(és)— o, k— o, for £=0,1,2, - - -, jo—1.
But {ord fis&n):h=1,2, .. } is bounded; therefore, for & suffi-
ciently large, the point (jo, ord f;,(£4)) is on Ag,.

For 0 <v <jo, let §,= {hCZ: (v, ord f,(£4)), (jo, ord f.,(£4)) are verti-
ces of a side of A, }. Then for some vy, &, is infinite; therefore, the
set of slopes

{ord fio(€n) — ord fu,(€r)

Jo — Vo

thE 8,0}

is infinite, whence p is x-distinguished on V().
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