
ON THE NEWTON POLYTOPE
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1. Introduction. The theory of the Newton polygon of a polynomial

in one variable with coefficients in a complete non-Archimedean

valued field is well known (see, for example, [l], [2], [3], [ó]). In

[4], Krasner states that one may construct an analogous Newton

polytope for a polynomial in several variables. In this paper we ex-

plore the properties of the Newton polytope.

I am very grateful to Professor B. M. Dwork for his encouragement

and advice.

2. Preliminaries. Let K be a complete field with respect to a non-

Archimedean rank one valuation x—>ord x with value group © C.R,

where R denotes the additive group of real numbers. We shall assume

that © is dense in R. Let $ be the algebraic closure of K, and extend

the valuation to Ë in the natural manner. As in [2], for each real

number b we define r¡,= {££$: ord £ = &}.

Definition 1. Let/(x)= E^-o^^P^x]. For any pGR, vif; p)

= Min0s,s„ (ord ai+ip).

Remark, vif; p) is the F-intercept of the lower line of support of

the Newton polygon of/ with slope — p.

We need the following results from the one-variable theory.

Proposition 1. Let fix) G K [x ] have a zero on Tr. Then for any X G ©

satisfying the inequality X5ïî>(/; r), there exists £Grr such that ord/(£)
=X.

Proof, (a) If a09^0 and — r is the slope of the first side of the New-

ton polygon of/ (i.e., if, for all r'>r, f has no zero on Yr>) then clearly

v(f'< r)=orda0. Therefore, we need only choose ?GTx such that

ord (a0—7) =ord a0, for then the polynomials/(x) and/(x)—7 will

have identical Newton polygons. If \>vif; r), then for any 7GI\,

ord (a0—7)=ord a0; if X = d(/; r), we choose a, ß(E.Y0 such that

a4-/3Gr0 (this can be done since the residue class field of $ contains

more than two elements), and put 7 = ao(l+a¿3_1).

(b) If either a0 = 0 or — r is not the slope of the first side of the

Newton polygon of /, let 7 be any element of T\, and consider the

Newton diagram of/(x)—7: clearly the Newton diagram of fix)— 7

coincides with the Newton diagram of /(x), with the possible excep-
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tion of the points with zero abscissa. Since ord(ö0—7) ^v(f; r), — r is

the slope of a side of the Newton polygon of f(x) —y.

The following result is essentially identical to Lemma 1.2 of [2].

Lemma 1. Let fi(x), f2(x), ■ ■ ■ , fn(x) be a finite set of polynomials

with coefficients in K, let pE®- Then there exists ¡¡ET,, such that

ord fi(0 =»(/<; p), i = l, 2, • • • , n.

Proof. Let »(/<; p) = Mit i= 1, 2, • • • , n; then MtE®. Therefore,

we may choose WíETmí, ttET?. For each i, we put gi(x) =fi(irx)/iri.

Then the coefficients of g%(x) are integral and the image of gi(x) in

the residue class field of S is nontrivial. Since the residue class field

is infinite there is a unit £' in $ such that ord g»(£') =0, i= 1, 2, ■ • • ,

». If we put £ = tt¿;', we have the desired result.

3. The Newton polytope. Let f(x, y)= ^aaxy'EKlx, y]. The
point set {(i, j, ord ai3) } is called the Newton diagram of f(x, y). We

define the convex closure of the Newton diagram of f(x, y) with the

point (0, 0, + =0) to be the Newton polytope of f(x, y).

Remark. The Newton polytope of f(x, y) is the graph of the func-

tion

nf(X, Y) = Sup [v(f; n, v) - ßX - vY],

where v(f; ß, v) is defined in the obvious manner generalizing Defini-

tion 1: v(f; ß, v) = Min,-,.,- (ord a^+iß+jv) (see [5, p. 49]).

Let (£f n)E® XÍ?, suppose (£, 7?)er„xr,. The following result
gives an estimate for ord/(£, r¡) in terms of p, a.

Proposition 2. Let P be the lower plane of support of the Newton

polytope of f(x, y), with dZ/dX= — p, dZ/dY= —a. Suppose (£, tj)
£rp XT». // only one vertex of the polytope lies on P, then only one term

of /(£> v) attains minimal ord, and then ord/(£, r})=v(f; p, a), the

Z-axis intercept of P. Otherwise, ord/(£, r¡) ̂ v(f; p, a).

Proof. Let the plane P,j be defined by the equation Z+pX+cY

= ord(a;y£y). Then the point (i,j, ord a,-,-) in the Newton diagram of

f(x, y) lies in Pi¡; but ord^^y) «Cord^-y^y) (respectively

ord(a,j£y) ^ord^'j^'V')) if and only if the intercept cut off on the

Z-axis by the plane Pa is less than (respectively less than or equal

to) that cut off by P.-y Thus, orà(ahh^"r]i<s) = Min»,y ord(a,-y£y') if

and only if P,0JO is the lower plane of support of the Newton polytope

with dZ/dX= -ord £, ôZ/r3F= -ord 17.

Corollary. // (£, rj) is a zero of f(x, y), then the lower plane of sup-
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port P of the Newton polytope of fix, y) with dZ/dX = -ord £, dZ/dY
= — ord 7] contains an edge of the polytope.

Remark. No distinction is made here between the plane P con-

taining an edge or a face of the polytope.

The converse to the corollary of Proposition 2 is also valid. Thus,

the Newton polytope of /(x, y) gives an explicit criterion for deter-

mining the existence of a zero oí fix, y) on rrxrs. Before proceeding

to the proof of the converse, we introduce the following notation.

Let fix, y)=foix)+fiix)y+f2Íx)y2+ ■ ■ ■ +/»(*)?», fiix)EK[x],
¿ = 0,1,2, • ■ ■ ,ii. We shall assume that fix, y) $zK[x],fnix)¿¿0. Let

n denote the Newton polytope of fix, y). For pE®, let A„ be the

convex closure in the FZ-plane of the point set {(0, j, vif,-; p)):

7 = 0, 1, 2, • • • , «} with the point (0, 0, 4- »). For ¿GP", let A£ be
the convex closure in the FZ-plane of the point set {(0, j, ord/,(£)) :

7 = 0, 1, 2, • • • , «} with the point (0, 0, + »). We observe that Aj

is the Newton polygon of the polynomial g^iy) = E/iO?)?'» and that

if ord£ = p, then no point of A„ lies below Aj. Let Ily denote the

Newton polygon of the polynomial/,(x) in the plane F =7', and finally

let Ijip) be the lower line of support of II, with slope — p in the plane

F=i-

Proposition 3. Let fix, y)EK[x, y], let r, sG®. Suppose P„ is the

lower plane of support of n, the Newton polytope of fix, y), with equa-

tion Z+rX+sY+d = 0. If Prs contains an edge of Ti, then there is a

point (£, ï?)Grrxrs such that fit, 77) =0.

Proof. Suppose Prj contains an edge of II with direction numbers

(a, ß, 7). Since Pr, cannot contain a vertical line, either a or ß is

different from zero. We may assume, with no loss of generality, that

ß^O. Then a pair of points pi— (l'i, Ji, ord a¿ui), p2= (¿2,7*2, ord a,-^) of

the Newton diagram oí fix, y) is on Prs, with Ji9*jt. Since P„ is a

lower plane of support of II containing pi and p2, with dZ/dX= —r,

it follows that IjSj) and lj2ir) are in P„. By Lemma 1, we may choose

£Grr such that ordfhi£)=vifh; r), ordfhi£)=vifh; r). Thus, the
points 2i=(0, 71, ordfùiÇ)) and q%=i0,j2, ord/y2(£)) of the Newton

diagram of gtiy) are in P„, and are therefore on a side of Aj which

lies in PTa (since no point of Aj can lie below the intersection of Pr>

with the FZ-plane). But since A{ lies in the (X = 0)-plane, we see

that the side of Aj determined by Ci, g2 has slope dZ/dY= —s; there-

fore, the polynomial gtiy) has a root 17GT,. Hence, (£, rj) Grrxr„ and

/tt,9)-0.
We summarize these results in
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Theorem 1. Letf(x, y)EK[x, y], let r, sE®, and let P„ be thelower

plane of support of the Newton polytope of f(x, y) with dZ/dX = — r,

dZ/dY= —s. There is a zero (£, 77) of f(x, y) such that ord£=— r,

ord i] = —s if, and only if, the plane Pr, contains an edge of the polytope.

4. Distinguished values.

Definition 2. Let D be a subset of ÄXÄ, let r (respectively s) be

a real number. We say that r is x-distinguished on D (respectively,

5 is y-distinguished on D) if there are infinitely many sE® (respec-

tively, infinitely many rE®) such that Dl^(YrXT,)^0.

Proposition 4. Letf(x, y)EK[x, y], supposef(x, y)9£0;letD= V(f)
= {(£» rç)£$X$:/(£, 77) = 0}. The set of real numbers which are x-

distinguished on D (respectively, y-distinguished on D) is finite.

Proof. Let f(x, y) =fo(x)+fi(x)y+f2(x)y2+ ■ ■ • +/n(x)y, /,(x)
EK[x], O^i^n. Since f(x, y)^0, not all the polynomials {/¿(x)}

are zero. Let g be the subset of {fi(x): O^îâ«} consisting of those

polynomials which are nonzero, and let 9î be the set of values of

zeros of polynomials in %, i.e., rE$t if there is a pair (/, £)€E$xrr

such that/(£) =0. Clearly 9Î is a finite set. Suppose r'(J:9t Then for

^GL-, the Newton diagram of g¡=(y) =/(£, y) depends only on ord £.

Therefore, as £ runs through Tr>, there is only a finite number of sE®

such that gj has a zero on Y,. Therefore if r'(J:9î, r' is not x-distin-

guished on D.

The set of real numbers which are distinguished for a given poly-

nomial is determined by the Newton polytope of that polynomial.

In fact, we shall prove

Theorem 2. Let f(x, y)EK[x, y], suppose /(0, 0)^0. Then p is

x-distinguished on V(f) if, and only if, there is an edge of the Newton

polytope of f(x, y) with direction numbers (1, 0, —p).

The proof of Theorem 2 will be a trivial consequence of Proposi-

tions 5 and 6.

Lemma 2. Let f(x, y) = f0(x) + fi(x)y + f2(x)y2 + ■ ■ ■ + fn(x)yn

EK [x, y], suppose f(x, y) <£& [x],f(0, 0) ̂ 0. Let pE®, and let A„, LL;,

0 ^j^n, be as previously defined. If the point (0, jo, v(fjfl; p)) is on A„,

then there is a vertex (i0, jo, ord öf0j0) of HJ0 which is on the Newton

polytope off(x, y).

Proof. Suppose the point (0, jo, v(fja; p)) is on the side of Ap with

vertices (0,/i, v(fh; p)), (0,j2, v(fit; p)), and suppose/i <j2. Let P be

the plane determined by the (parallel) lines /^(p) and lj2(p). Then

certainly /J0(p) lies in P. It remains only to be shown that P is a
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lower plane of support of the polytope. Suppose not ; then there is a

point ii',j', ord c.-y/) below P. Hence (0, j', »(/,•<; p)) lies below the

line PH(X = 0). This contradicts convexity of Ap in the FZ-plane.

Corollary. Using the above notation, if (0, j0, »(/i0; p)) is on Ap,

and if ord/,-„(£) has more than one value for £Grp, then a side o/LTy0 is

on the polytope of fix, y).

Proposition 5. If p(E® is x-distinguished on Vif), then there is an

edge of the Newton polytope off with direction numbers (1,0, — p).

Proof. For £Grp, we let giiy), Aj, Ap be defined as before. Since p

is x-distinguished on Vif), the set of slopes of sides of the polygons

{Ac: £Grp} is infinite. Consider the set of non-negative integers7' with

the property that (0,7, vif¡;p)) is a vertex of Ap and {ord/>(£): £€irp}

has more than one element. If this set were empty, it would follow

that AP=A{ for each £Grp, contradicting the hypothesis. Let 70 de-

note the smallest integer of this set.

By the previous corollary, ¿y0(p) contains a side of IIy0, and this

side is on II. To complete the proof of Proposition 5, we need only

show that this side of IIy0 is indeed an edge of the polytope. If jo is

either 0 or «, this is certainly the case. Otherwise, we may choose

integers7\,7'2suchthat(0,7i,ü(/y1;p)), iO,jo,vifh;p)) and (Q,jt,vifjt;p))

are distinct adjacent vertices of Ap, with 0 iS/i <7°o <j2 a«• Let Pi be

the plane determined by the lines /y„(p), Ij^ip), and let P2 be the plane

determined by the lines l^ip), h^ip). By the concluding argument of

Lemma 2, Pi and P2 are lower planes of support of the Newton poly-

tope oí fix, y). By choice of 7*1 and 7*2, they are distinct, and their inter-

section is the line ¿y0(p). This completes the proof.

Proposition 6. // there is an edge of the Newton polytope of fix, y)

with direction numbers (1, 0, — p), then pG® and p is x-distinguished

on Vif).

Note. It is not necessary to assume here that pE®.

Proof. We again write/(x, y) = E"-i/j(x)y'* what we are required

to show is that, if there is a polynomial/¿(x) such that/;(x) has a zero

on Tp and, moreover, that the side of II, of slope —p is an edge of the

Newton polytope n of /(x, y), then p is x-distinguished on Vif). That

is, we must show that the set £p= {X: —X is the slope of a side of Aj,

for some £Grp} is infinite. (We observe that pG®, from the one-

variable Newton polygon theory applied to/,(x).)

Case 1. For some k, O^k^n, /* has no zeros on Tp. Let k0 be the

smallest such k. Then either k0 = 0 or ka>0.
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(la) Suppose k0 — 0. Let ¿0 be the smallest integer with the prop-

erty that a side of ni0 of slope —p is an edge of II. Then (0, i0, v(filt; p))

is a vertex of A„. Moreover, i0>0, since/0 has no zeros on T„.

Let the vertices of Ap in the FZ-plane have F-coordinates 0=cco

<«x< • ■ • <at, let io = ai. Then for all ££rp, the polygons A£ and

A/, agree in vertices whose F-coordinates are aa, «i, • • • , a.-i.

Figure 1. Newton polygon of A,

Consider the set ,3 OI Z-coordinates of points on the line EG in

Figure 1 which are also in ®.1 Since ® is dense in R, the set 3 is in-

finite. But E has coordinates (i0, v(fi{t; p)), whence from Proposition 1,

we may choose, for each rE$>, an element ^Gr, such that ord /,0(£r)

= r. Let S be a set of representatives of $ in rp: if ££2 then ord /10(£)

ES, and £, S'GS, £^£' implies ord /,„(£) ?áord/,,(£')• The definition
of 3 guarantees that (a0 ord /«/£)) is a vertex of Aj for any ££2.

For «t-xay^a.-l, we define the sets 2^ = {££2: (f, ord /,(£)),

(to, ord/,„(£)) are vertices of a side of Aj}. Then, since

S = Ua.-js^aoj-i E?\ we may choose vi to be the largest integer with the

property that vi<io and 2^' is an infinite set. Let Xi= {ord /n(£):

££2^}. If ïi is finite, then the set {ord /n(£) - ord /,„(£) : ££2^} is

infinite, whence so is 8P. Otherwise we define, for a,_i ^ j> Oi, the sets

2®= {££2^: (f, ord /„(£)), (fi, ord /„(£)) are vertices of a side of A{},

and choose v% to be the largest integer with the property that v2<vi

and 2® is an infinite set. We then define %2= {ord/„s(£): ££2®}.

Proceeding in this manner, we define a sequence of integers vi>v2

> • • • >Fm=£ai-ii and a corresponding sequence of sets Xi, X2, • • • ,

Xm. If Xi is finite for some i, then (la) is proved. Otherwise, we may

assume that m is such that i'm = o;l_i; but then, Xm= {ord/a,_i(£):

££2i"^j} = {flCfa.-u p)}, which is certainly finite. Thus, case (la) is

proved.

• If <*, = *, let 3= {XG®: ord XèK/»; p)J.
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(lb) Suppose k0>0. Then/o has a zero on Yp. Hence, by Proposi-

tion 1, we may choose a sequence {£&} Crp such that ord/0 (£>,)—> =°

as ft—>co. If p is not x-distinguished on Vif), we must then have

ord/i (£;,)—> co asA—>co, • • ■ , ord/*0_i (£>,) —»<x> as h—> co. But then, for

h sufficiently large, the point ik0, ord/*„(£/,)) = ik0, v(fk„; p)) is on A{v

For Q£v<k0, we let S„ = [hEZ: iv, ord/„(&)), (fe0, ord/*„(£/>)) are

vertices of a side of Ajh}. Then for some vo, the set S,0 is infinite,

whence the set of slopes

lvifk„;p) - ord/„„(&)
-: h G S

l «o — PO
'Oí

is infinite, whence p is x-distinguished on Vif).

Case 2. /y(x) Aas a zero on Yp for each j, Q^j^n. If there is an

rçGrp such that/y(i))=0 for each j, O^j^n, then certainly p is x-

distinguished on Vif). Therefore, we may assume that no root of one

of the fj is a root of all the /,-.

Let /o have the zeros r¡i, r¡2, • • • , r¡w on Tp. Let 7*0 be the smallest

integer with the property that, for some i0, Itkioúw, /y0(i?;0) 5^0.

Choose a neighborhood A of 7jt0 in $ such that {ord/y0(£): £GA} is

bounded. Since the valuation of $ is dense, we may choose a sequence

{&} CN such that ord/*(&)-»», Ä->°o, for fe = 0, 1, 2, • • • ,jo-l.
But {ord /,-„(£*): A = 1, 2, • • ■ } is bounded; therefore, for h suffi-

ciently large, the point (70, ord/,„(£;,)) is on Ajv

For 0^v<jo, let 8,= {hEZ: iv, ord/„(&)), (70, ord/,„(£*)) are verti-

ces of a side of Ajk}. Then for some vo, S»0 is infinite; therefore, the

set of slopes

ford/,,(**) - ord/,„(£„) "»
S-:-: * G S,^
I 7o — vo 1Jo — vo

is infinite, whence p is x-distinguished on Vf).
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