ON THE INVERSE PROBLEM OF GALOIS THEORY OF DIFFERENTIAL FIELDS

A. BIALYNICKI-BIRULA

0. One can ask what algebraic groups are isomorphic to groups of automorphism of strongly normal extensions of a fixed ordinary differential field (see [2]). The purpose of the note is to give a contribution in this direction. We shall prove the following theorem.

THEOREM. Let \mathfrak{F} be an ordinary differential field with algebraically closed field of constants C and suppose that \mathfrak{F} is of finite transcendence degree over C but is different from C. Let G be a connected nilpotent affine algebraic group defined over C. Then there exists a strongly normal extension \mathcal{E} of \mathcal{F} such that the Galois group $\mathfrak{G}(\mathcal{E}/\mathcal{F})$ is isomorphic to G(C).

1. All fields considered here are of characteristic 0. Let F be a field, let C be an algebraically closed subfield of F. Let G be a connected algebraic group defined over C. F(G) denotes the field of all rational functions on G defined over F. If $g \in G$ then F(g) denotes the field generated by g over F. We shall say that a derivation of F(G) commutes with $G^*(C)$ if it commutes with g^* , for every $g \in G(C)$, where g^* denotes the automorphism of F(G) induced by the left translation by g, i.e., $(g^*f)(x) = f(gx)$, for any $x \in G$. \mathfrak{G}_F denotes the Lie algebra of all derivations of F(G) that are zero on F and which commute with $G^*(F)$. If G_1 is a normal subgroup of G defined over F then $F(G/G_1)$ is canonically isomorphic to a subfield of F(G); we shall identify $F(G/G_1)$ and this subfield.

If R is an integral domain then (R) denotes the field of fractions of R. Every derivation d of R can be uniquely extended to a derivation of R (the extended derivation will be also denoted by d). If F_1 , F_2 are two fields containing F as a subfield and if d_1 , d_2 are derivations of F_1 , F_2 , respectively, such that $d_1 \mid F = d_2 \mid F$ and $d_1(F) \subset F$ then $d_1 \otimes d_2$ denotes the derivation of $F_1 \otimes_F F_2$ determined by $(d_1 \otimes d_2)(a \otimes b) = d_1(a) \otimes b + a \otimes d_2(b)$, for every $a \in F_1$ and $b \in F_2$.

 d_0 denotes the zero derivation of a field (it will be always clear what field we have in mind). The underlying field of an ordinary differential field \mathfrak{F} will be denoted by F.

2. Lemma 1. If d_1 belongs to the center of \mathfrak{G}_C then the derivation $d_1 \otimes d_0$ of $(C(G) \otimes F)$ (= F(G)) commutes with every derivation d of F(G) such that $d(F) \subset F$ and $dg^* = g^*d$ for every $g \in G(C)$.

PROOF. Let d be as in the lemma. Then $d-d_0\otimes(d\mid F)$ is zero on F and commutes with $G^*(F)$ and so $d-d_0\otimes(d\mid F)\in \mathfrak{G}_F$. But $d_1\otimes d_0$ belongs to the center of \mathfrak{G}_F and commutes with $d_0\otimes(d\mid F)$. Thus $d_1\otimes d_0$ commutes with $d=d-d_0\otimes(d\mid F)+d_0\otimes(d\mid F)$.

LEMMA 2. Let G_1 be a normal subgroup of G defined over C and let d^0 be a derivation of $F(G/G_1)$ such that $d^0(C) = 0$ and d^0 commutes with any element from $(G/G_1)^*(C)$. Then there exists an extension d' of d^0 to a derivation of F(G) that commutes with $G^*(C)$.

PROOF. Let g be a generic point of G over F(G). Extend d^0 to a derivation d_1 of F(G) and let d_2 be the extension of d_1 to a derivation of F(g)(G) which is trivial on C(g). Let V be a nonempty affine open subset of G defined over G and let $C[x_1, \dots, x_n]$ be the coordinate ring of V over G. Then there exists $h_0 \in V(G)$ such that d_1x_1, \dots, d_1x_n are defined at h_0 . Hence, if $a \in F(g)(G)$ is defined at h_0 then $d_2(a)$ is also defined at h_0 . In particular, for any $a \in F(G)$, $d_2((gh_0^{-1})^*a)$ is defined at h_0 (since $((gh_0^{-1})^*a)(h_0) = a(g)$). Let, for any $a \in F(G)$, d'(a) be the element of F(G) such that $d'(a)(g) = d_2((gh_0^{-1})^*a)(h_0)$. One can easily see that the definition of d' does not depend on g. In particular, if g_1 is any point of G such that $C(g_1) = C(g)$, then g_1 is generic for G over G and so $G'(a)(g_1) = d_2((g_1h_0^{-1})^*a)(h_0)$. Hence, for any G'(G) over G'(G) and so G'(G) is G'(G). Thus G'(G) is G'(G). Indeed

$$d'(a + b)(g)$$

$$= d_2((gh_0^{-1})^*(a + b))(h_0) = d_2((gh_0^{-1})^*a)(h_0) + d_2((gh_0^{-1})b)(h_0)$$

$$= d'(a)(g) + d'(b)(g)$$

and

$$d'(ab)(g) = d_2((gh_0^{-1})^*ab)(h_0)$$

$$= d_2((gh_0^{-1})^*a)(h_0) \cdot (gh_0^{-1})^*b(h_0) + (gh_0^{-1})^*a(h_0) \cdot d_2((gh_0^{-1})^*b)(h_0)$$

$$= d'(a)(g) \cdot b(g) + a(g) \cdot d'(b)(g).$$

Finally, if $a \in F(G/G_1)$ then

$$d'(a)(g) = d_2((gh_0^{-1})^*a)(h_0) = d^0((gh_0^{-1})^*a)(h_0)$$

= $(gh_0^{-1})^*d^0(a)(h_0) = d^0(a)(g),$

i.e., d' is an extension of d^0 . This completes the proof of the lemma.

LEMMA 3. Let G_1 be a connected central one-dimensional normal sub-

group of an affine connected algebraic group G, both defined over F. Let $d_1 \in \mathfrak{G}_F$ be a derivation in the direction of G_1 . Then, for any $a \in F(G)$, $d_1(a) = 0$ if and only if $a \in F(G/G_1)$. Moreover, there exists an element $b \in F(G) - F(G/G_1)$ such that either $d_1(b) = c \cdot b$ or $d_1(b) = c$, where c is an element from $F(G/G_1)$.

PROOF. The first part of the lemma is well known. Let b' be a regular function on G such that $b' \in F(G) - F(G/G_1)$. Then $G_1^*(F) \cdot b'$ generates a finite-dimensional F-vector space. Since G_1 is one-dimensional and connected, hence we may assume that this space is either one-dimensional or two-dimensional with basis b_0 , b', where $b_0 \in F(G/G_1)$ and $g^*(b') = \alpha(g)b_0 + b'$, $\alpha \in F(G/G_1)$ and $\alpha(g) \neq 0$ if $g \neq \text{identity } e$ of G_1 . Then it follows from Lemma 7 [1] that in the first case $d_1(b') = cb'$, where c is an element from $F(G/G_1)$ and we may take b = b'. In the second case (again by Lemma 7 [1]) $c_1d_1^2(b') + c_2d_1(b') + c_3b' = 0$, for some c_1 , c_2 , $c_3 \in F(G/G_1)$ which do not vanish simultaneously. Then $0 = g^*(c_1d_1^2(b') + c_2d_1(b') + c_3b') = c_1d_1^2(b') + c_2d_1(b') + c_3(\alpha(g)b_0 + b')$, for every $g \in G_1(F)$. Hence $c_3 = 0$ and $c_1 \neq 0$. If $c_2 \neq 0$, then $d_1(d_1(b')) = -c_2/c_1$, $d_1(b') \neq 0$, and we take $b = d_1(b')$. If $c_2 = 0$, then $d_1(b') = 0$. Hence $d_1(b') \in F(G/G_1)$, and we take b = b'.

LEMMA 4. Let \mathfrak{F} be an ordinary differential field with derivation d, let C be the field of constants of \mathfrak{F} and suppose that \mathfrak{F} is of finite transcendence degree over C. Let \mathfrak{F}_1 be a (differential) subfield of \mathfrak{F} which is not contained in C and let $c \in C$. Then there exist a_1 , $a_2 \in \mathfrak{F}_1$, $a_1 \neq 0 \neq a_2$, such that there is no element $y \in \mathfrak{F} - C$ which satisfies either $dy = a_1 \cdot c$ or $dy = a_2 cy$.

PROOF. We may suppose that \mathfrak{F}_1 contains an element x such that dx=1 (let $x\in\mathfrak{F}_1-C$; then $dx\neq 0$ and we may replace d by $1/dx\cdot d$). If $dy_n=c/(x+n)$, $y_n\in\mathfrak{F}-C$, where n is an integer, then, one can prove that the elements y_i , for different integers i, are algebraically independent over C. Similarly, if $dz_n=x^ncz_n$, then the elements z_i , for different integers i, are also algebraically independent over C. Hence F contains only a finite number of elements y_i and z_i . Thus, for some n, y_n , $z_n \in \mathfrak{F}$ and the lemma is proved.

3. **Proof of the theorem.** Let d be the nonzero derivation of \mathfrak{F} . We shall show that one can extend d to a derivation d^* of F(G) which commutes with $G^*(C)$ and has C as the field of constants. Proof by induction on the dimension of G.

If dim G = 0, then this is trivial.

Suppose that the above is true for connected nilpotent affine groups of dimension n and let dim G = n + 1. There exists a central connected

normal subgroup G_1 of G defined over C and of dimension 1. Then G/G_1 is an affine nilpotent connected group of dimension n. Hence there exists an extension d^0 of d to a derivation of $F(G/G_1)$ such that C is the field of constants of d^0 and d^0 commutes with $(G/G_1)^*(C)$. It follows from Lemma 2 that d^0 can be extended to a derivation d' of F(G) that commutes with $G^*(C)$. Let $d_1 \in \mathfrak{G}_F$ be a derivation of F(G)in the direction of G_1 . Then the field of constants of d_1 is $F(G/G_1)$ and it follows from Lemma 1 that d_1 commutes with every derivation ad', where $a \in F$. Therefore the set of all $b \in F(G)$, for which $d_1(b)$ =ad'(b), where a is fixed, is a subfield F_a of F(G) closed under d_1 (and ad'). Indeed, it is easy to see that this is a field. Moreover, if $d_1(b) = ad'(b)$, then $d_1(d_1(b)) = d_1(ad'(b)) = ad'(d_1(b))$. C is the field of constants of $d_1 \mid F_a$ for $a \neq 0$, since the field of constants of d_1 is $F(G/G_1)$ and the field of constants of $ad' \mid F(G/G_1)$ is C. And we want to prove that $F_a = C$, for some $a \in F$. Let $a \in F$; consider the ordinary differential field $(F(G) \otimes_{c} F(G/G_{1}))$ together with the derivation algebraic closure $(F(G) \otimes_{\mathfrak{c}} F(G/G_1))^*$ and the $(F(G) \otimes_c F(G/G_1))$ with the unique extension $(ad' \otimes d_0)^*$ of $(ad' \otimes d_0)$. F_a is linearly disjoint from $F(G/G_1)$ over C since $F(G/G_1)$ is the field of constants of d_1 and C is the field of constants of $d_1 \mid F_a$ (see Proposition 1 in [3] or Lemma 1 in [1]). Hence there exists a subfield of F(G) with d_1 which is canonically isomorphic to $(F_a \otimes_c F(G/G_1))$ with $(ad'|F_a) \otimes d_0$. F(G) is an algebraic extension of the subfield unless $F_a = C$ and this isomorphism maps b onto $1 \otimes b$, for every $b \in F(G/G_1)$. Therefore $F_a \neq C$ implies that there exists an isomorphism α_a of F(G) with d_1 into $(F(G)) \otimes_c F(G/G_1)$ * with $(ad' \otimes d_0)$ * such that $\alpha_a(b) = 1 \otimes b$, for every $b \in F(G/G_1)$. It follows from Lemma 3 that there exist elements $c \in F(G/G_1)$ and $y \in F(G) - F(G/G_1)$ such that either $d_1y = c$ or $d_1y = cy$. Therefore, for every $a \in G$, $a \ne 0$ for which $F_a \neq C$, we have that either $(ad' \otimes d_0)^* \alpha_a(y) = 1 \otimes c$ or $(ad' \otimes d_0)^* \alpha_a(y)$ $= (1 \otimes c)\alpha_a(y)$, i.e., either $(d' \otimes d_0)^*\alpha_a(y) = 1 \otimes c/a \otimes 1$ or $(d' \otimes d_0)^*\alpha_a(y)$ $=1\otimes c/a\otimes 1$ $\alpha_a(y)$. But it follows from Lemma 4 that there exist $a_1, a_2 \in F$ such that neither $(d' \otimes d_0)^*z = 1 \otimes c/a_1 \otimes 1$ nor $(d' \otimes d_0)^*z$ $= (1 \otimes c/a_2 \otimes 1)z$ has a solution z in $(F(G) \otimes F(G/G_1))^*$. Then $a_1 \neq 0 \neq a_2$ and either $F_{a_1} = C$ or $F_{a_2} = C$. If $F_a = C$, then $a \neq 0$ and the field of constants of $d^* = (1/a)d_1 - d'$ is C. Moreover, d^* commutes with $G^*(C)$. Thus we have proved by induction that there exists an extension d^* of d that commutes with $G^*(C)$ and has C as the field of constants.

Now if d^* is such a derivation then F(G) with d^* is a strongly normal extension of \mathfrak{F} and G(C) is the Galois group of the extension (see Proposition 1 and Theorem 1 in [1]).

REFERENCES

- 1. A. Bialynicki-Birula, On Galois theory of fields with operators, Amer. J. Math. 84 (1962), 89-109.
- 2. E. R. Kolchin, Galois theory of differential fields, Amer. J. Math. 75 (1953), 753-824.
- 3. ——, Algebraic matric groups and the Picard-Vessiot theory of homogeneous linear ordinary differential equations, Ann. of Math. (2) 49 (1948), 1-42.

University of California, Berkeley and Institute of Mathematics, P.A.N., Poland

ON A REALIZATION OF A COMPLEMENTED ALGEBRA

PARFENY P. SAWOROTNOW

In this note we intend to show that each simple complemented algebra is isomorphic to an algebra described in the example below (as in [6] we use the term "simple" to mean "simple and semisimple"). This paper can be considered as a continuation of [5] and [6].

In the example below (and in the proof of the theorem after it) we use terms "summable" and "integrable" in the sense defined in Chapter III of [3].

EXAMPLE. Let (S, μ) be a measure space. Let K(s) be a real-valued function defined on S and having the following properties:

- (i) K(s) is finite almost everywhere,
- (ii) there exists a positive number a such that $a \le K(s)$ for each $s \in S$.
- (iii) the restriction of K(s) to any summable subset of S is integrable (in particular K(s) may be integrable).

Let A be the set of all complex-valued members x of $L^2(S \times S, \mu \times \mu)$ such that $\int \int |x(t, s)|^2 K(s) dt ds$ is finite. Then A is a complemented algebra in the scalar product $(x, y) = \int \int x(t, s) \bar{y}(t, s) K(s) dt ds$ and the multiplication $(xy)(t, s) = \int x(t, r)y(r, s) dr$ (we consider pointwise addition and pointwise multiplication with a scalar). If K(s) is bounded above then A is well complemented. Condition (ii) implies continuity of the multiplication (in both factors simultaneously); if a=1 then $||xy|| \leq ||x|| \, ||y||$.

Presented to the Society, August 24, 1956, under the title Diagonalization of a complemented algebra; received by the editors July 15, 1963.