
ON THE INVERSE PROBLEM OF GALOIS THEORY
OF DIFFERENTIAL FIELDS

A. BIALYNICKI-BIRULA

0. One can ask what algebraic groups are isomorphic to groups of

automorphism of strongly normal extensions of a fixed ordinary

differential field (see [2]). The purpose of the note is to give a con-

tribution in this direction. We shall prove the following theorem.

Theorem. Let SF be an ordinary differential field with algebraically

closed field of constants C and suppose that $ is of finite transcendence

degree over C but is different from C. Let G be a connected nilpotent

affine algebraic group defined over C. Then there exists a strongly normal

extension 8 of 5 such that the Galois group 2Í&/3) is isomorphic to

GiC).

1. All fields considered here are of characteristic 0. Let P be a field,

let C be an algebraically closed subfield of P. Let G be a connected

algebraic group defined over C. P(G) denotes the field of all rational

functions on G defined over P. If gEG then Fig) denotes the field

generated by g over P. We shall say that a derivation of P(G) com-

mutes with G*iC) if it commutes with g*, for every gEGiC), where

g* denotes the automorphism of P(G) induced by the left translation

by g, i.e., (g*/)(x) =/(gx), for any xEG. ®f denotes the Lie algebra

of all derivations of FiG) that are zero on F and which commute

with G*iF). If Gi is a normal subgroup of G defined over F then

FiG/Gi) is canonically isomorphic to a subfield of P(G) ; we shall

identify P(G/Gi) and this subfield.
If R is an integral domain then (P) denotes the field of fractions

of P. Every derivation d of P can be uniquely extended to a derivation

of P (the extended derivation will be also denoted by d). If Fu F*

are two fields containing P as a subfield and if ¿1, d2 are derivations

of Pi, P2, respectively, such that di\ P = ¿2| Pand di(P) CP then di®d2

denotes the derivation of Fi®fF2 determined by idi®d2)ia®b)

= diia)®b+a®d2ib), for every aGPi and bEF2.

do denotes the zero derivation of a field (it will be always clear

what field we have in mind). The underlying field of an ordinary

differential field ï will be denoted by P.

2. Lemma 1. // di belongs to the center of ®c then the derivation

di®do of iCiG)®F) ( = FiG)) commutes with every derivation d of

FiG) such that d(P) QF and dg* — g*d for every gGG(C).
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Proof. Let d be as in the lemma. Then d—d0®(d\ F) is zero on F

and commutes with G*(F) and so d—d0®(d\ F)E®f- But di®d0 be-

longs to the center of ®F and commutes with d0®(d\ F). Thus di®do

commutes with d = d—d0®(d\ F)+d0®(d\ F).

Lemma 2. Let Gi be a normal subgroup of G defined over C and let d°

be a derivation of F(G/Gi) such that d°(C) = 0 and d° commutes with

any element from (G/G\)*(C). Then there exists an extension d' of d°

to a derivation of F(G) that commutes with G*(C).

Proof. Let g be a generic point of G over F(G). Extend d" to a

derivation ¿i of F(G) and let d2 be the extension of ¿i to a derivation

of F(g)(G) which is trivial on C(g). Let F be a nonempty affine open

subset of G defined over C and let C[xu • • • , xn] be the coordinate

ring of F over C. Then there exists h0E V(C) such that diXit • ■ • , ¿iXn

are defined at h0. Hence, if aEF(g)(G) is defined at ha then d2(a) is

also defined at ha. In particular, for any aEF(G), d2((gh0~1)*a) is

defined at h0 (since ((ghe~1)*a)(ho) =a(g)). Let, for any aEF(G), d'(a)

be the element of F(G) such that d'(a)(g) =d2((gh¡r1)*a)(h0). One can

easily see that the definition of d' does not depend on g. In particular,

if gi is any point of G such that C(gi) = C(g), then gi is generic for G

over F and so d'(a)(gi) =d2((giho~l)*a)(h0). Hence, for any hEG(C)

(h*d'(a))(g) = d'(a)(hg) - d2((hgh^)*a)(ho) = d2((gh^)*h*a)(ho)
= d'(h*a)(g), since C(hg) = C(g). Thus dih* = h*du i.e., ¿i commutes

with G(Q*. Moreover, d' is a derivation of F(G). Indeed

d'(a + b)(g)

= d2((gho~Y(a + b))(ho) = d2((gh¡rl)*a)(ho) + d2((ghb~l)b)(ho)

= d'(a)(g) + d'(b)(g)

and

d'(ab)(g) = d2((ghôl)*ab)(ho)

= d2((gh^)*a)(ho)-(gh^)*b(ho) + (ghöl)*a(ho)-d2((ghöl)*o)(ho)

= d'(a)(g)-b(g) + a(g)-d'(b)(g).

Finally, if aEF(G/Gi) then

d'(a)(g) = d2((gho-ya)(ho) = d»((gh^)*a)(ha)

= (gho-Tdo(a)(ho) = d°(a)(g),

i.e., d' is an extension of d°. This completes the proof of the lemma.

Lemma 3. Let Gi be a connected central one-dimensional normal sub-
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group of an affine connected algebraic group G, both defined over F. Let

diE@F be a derivation in the direction of Gi. Then, for any aEFiG),

diia) =0 if and only if aEFiG /Gi). Moreover, there exists an element

bEFiG) — P(G/Gi) such that either di(b)=c-b or diQ>)=c, where c is

an element from P(G/Gi).

Proof. The first part of the lemma is well known. Let b' be a

regular function on G such that ¿>'GP(G)-P(G/Gi). Then GtiF)-b'

generates a finite-dimensional P-vector space. Since Gi is one-dimen-

sional and connected, hence we may assume that this space is either

one-dimensional or two-dimensional with basis bo, V, where ba

EFiG/Gi) and g*(V)=a(g)b*+V, aEFiG/Gi) and a(g)^0 if
g ̂ identity e of Gi. Then it follows from Lemma 7 [l] that in the

first case di(fr') =cb', where c is an element from P(G/Gi) and we may

take b = b'. In the second case (again by Lemma 7 [l ]) Cid\ib') +c2di(&')

+ c3e' = 0, for some C\, c2, c¡EFiG/Gi) which do not vanish simul-

taneously. Then 0 = g*icid\ib') + cAQb') + c3b') = cid\ib') + c2diib')

+c3iaig)bo+b'), for every gGGi(P). Hence c3 = 0 and Ci^O. If c25¿0,

then diidiib')) = -c2/ci, diib')^0, and we take b = diib'). If c2 = 0,

then d\ib') =0. Hence diib')EFiG/Gi), and we take b = V.

Lemma 4. Let 7 be an ordinary differential field with derivation d, let

C be the field of constants of í and suppose that SF is of finite transcend-

ence degree over C. Let £Fi be a idifferential) subfield of $ which is not

contained in C and let cEC. Then there exist ait c^G^i, öi^O^ö^,

such that there is no element yE$—C which satisfies either dy — ai-c or

dy = a2cy.

Proof. We may suppose that iFi contains an element x such that

dx=l (let xE'Si — C; then dx^O and we may replace d by l/dx-d).

If dyn = c/ix-\-n), ynE$—C, where « is an integer, then, one can

prove that the elements y„ for different integers i, are algebraically

independent over C. Similarly, if dzn = xnczn, then the elements z¿, for

different integers i, are also algebraically independent over C. Hence

F contains only a finite number of elements y¿ and z¿. Thus, for some

«, yn, znE$ and the lemma is proved.

3. Proof of the theorem. Let d be the nonzero derivation of 3\ We

shall show that one can extend ¿toa derivation d* of FiG) which

commutes with G*iC) and has C as the field of constants. Proof by

induction on the dimension of G.

If dim G = 0, then this is trivial.
Suppose that the above is true for connected nilpotent affine groups

of dimension « and let dim G = « + l. There exists a central connected



i964] ON THE INVERSE PROBLEM OF GALOIS THEORY 963

normal subgroup Gi of G defined over C and of dimension 1. Then

G/Gi is an affine nilpotent connected group of dimension n. Hence

there exists an extension d° of d to a derivation of F(G/Gi) such that

C is the field of constants of ¿° and d° commutes with (G/Gi)*(C). It

follows from Lemma 2 that d° can be extended to a dérivation d' of

F(G) that commutes with G*(C). Let diE®p be a derivation of F(G)

in the direction of Gi. Then the field of constants of di is F(G/Gi)

and it follows from Lemma 1 that ¿i commutes with every derivation

ad', where aEF. Therefore the set of all bEF(G), for which di(b)

= ad'(b), where a is fixed, is a subfield Fa of F(G) closed under di

(and ad'). Indeed, it is easy to see that this is a field. Moreover, if

di(b)=ad'(b), then dx(dx(b)) = di(ad'(b)) = ad'(dx(b)). C is the field of
constants of ö\| Fa for a¿¿0, since the field of constants of ¿i is

F(G/Gi) and the field of constants of ad' \ F(G/Gi) is C. And we want

to prove that Fa—C, for some aEF. Let aEF; consider the ordinary

differential field (F(G) ®„ F(G/Gi)) together with the derivation

ad' ® d0 and the algebraic closure (F(G) ®c F(G/Gi))* of

(F(G) ®cF(G/Gi))-with the unique extension (ad'® d0)* of (ad' ® d0).

Fa is linearly disjoint from F(G/Gi) over C since F(G/Gi) is the field

of constants of di and C is the field of constants of di \ Fa (see Proposi-

tion 1 in [3] or Lemma 1 in [l]). Hence there exists a subfield of

F(G) with di which is canonically isomorphic to (Ftt ®c F(G/G\)) with

(ad' I Fa) ® do- F(G) is an algebraic extension of the subfield unless

Fa=C and this isomorphism maps b onto 1 ® b, for every bEF(G/Gi).

Therefore Fa?¿C implies that there exists an isomorphism aa of

F(G) with di into (F(G)) ®e F(G/d))* with (ad' ® d0)* such that

aa(b) — l ® b, for every bEF(G/Gi). It follows from Lemma 3 that

there exist elements cEF(G/Gi) and yEF(G) — F(G/Gi) such that

either dxy = c or dxy = cy. Therefore, for every aEG, a^O for which

Fa5¿C, we have that either (ad'®d0)*aa(y) = i®c or (ad'®da)*aa(y)

= (l®c)aa(y), i.e., either (à"®da)*aa(y) = \®c/a®\ or (d' ®da)*aa(y)

= í®c/a®í aa(y). But it follows from Lemma 4 that there exist

0i, a2EF such that neither (d'®d0)*z= l®c/ai®l nor (d'®d0)*z

= (1 ®c/a2® i)z has a solution 0 in (F(G)®F(G/Gi))*. Thenai¿¿Qi¿a2

and either Fai—C or Fai=C. If Fa—C, then a5¿0 and the field of

constants of d* = (l/a)di — d' is C. Moreover, d* commutes with

G*(C). Thus we have proved by induction that there exists an ex-

tension d* of d that commutes with G*(C) and has C as the field of

constants.

Now if d* is such a derivation then F(G) with d* is a strongly

normal extension of fJ and G(C) is the Galois group of the extension

(see Proposition 1 and Theorem 1 in [l]).
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ON A REALIZATION OF A COMPLEMENTED ALGEBRA

PARFENY P. SAWOROTNOW

In this note we intend to show that each simple complemented

algebra is isomorphic to an algebra described in the example below

(as in [6] we use the term "simple" to mean "simple and semisimple").

This paper can be considered as a continuation of [5] and [6].

In the example below (and in the proof of the theorem after it) we

use terms "summable" and "integrable" in the sense defined in

Chapter III of [3].

Example. Let (5, p) be a measure space. Let P(s) be a real-valued

function defined on S and having the following properties:

(i) K~is) is finite almost everywhere,

(ii) there exists a positive number a such that af¿K~is) for each

sES,
(iii) the restriction of P(s) to any summable subset of 5 is inte-

grable (in particular P(s) may be integrable).

Let A be the set of all complex-valued members x of L2iSXS, pXp)

such that //| x(i, s) \ 2K~is)dtds is finite. Then A is a complemented

algebra in the scalar product (x, y) =//x(r, s) yit, s)K~is) dtds and the

multiplication (xy)(/, s)=fxit, r)yir, s)dr (we consider pointwise

addition and pointwise multiplication with a scalar). If P(s) is bounded

above then A is well complemented. Condition (ii) implies continuity

of the multiplication (in both factors simultaneously) ; if a = 1 then

NIsMIIHl-
Presented to the Society, August 24, 1956, under the title Diagonalization of a

complemented algebra; received by the editors July 15,1963.


