ON THE INVERSE PROBLEM OF GALOIS THEORY
OF DIFFERENTIAL FIELDS

A. BIALYNICKI-BIRULA

0. One can ask what algebraic groups are isomorphic to groups of
automorphism of strongly normal extensions of a fixed ordinary
differential field (see [2]). The purpose of the note is to give a con-
tribution in this direction. We shall prove the following theorem.

THEOREM. Let § be an ordinary differential field with algebraically
closed field of constants C and suppose that § is of finite transcendence
degree over C but is different from C. Let G be a connected nilpotent
affine algebraic group defined over C. Then there exists a strongly normal
extension & of § such that the Galois group G(&/F) is isomorphic to
G(O).

1. All fields considered here are of characteristic 0. Let F be a field,
let C be an algebraically closed subfield of F. Let G be a connected
algebraic group defined over C. F(G) denotes the field of all rational
functions on G defined over F. If gEG then F(g) denotes the field
generated by g over F. We shall say that a derivation of F(G) com-
mutes with G*(C) if it commutes with g*, for every gEG(C), where
g* denotes the automorphism of F(G) induced by the left translation
by g, i.e., (g*f)(x) =f(gx), for any x&G. ®@r denotes the Lie algebra
of all derivations of F(G) that are zero on F and which commute
with G*(F). If G, is a normal subgroup of G defined over F then
F(G/G,) is canonically isomorphic to a subfield of F(G); we shall
identify F(G/G,) and this subfield.

If R is an integral domain then (R) denotes the field of fractions
of R. Every derivation d of R can be uniquely extended to a derivation
of R (the extended derivation will be also denoted by d). If F, F,
are two fields containing F as a subfield and if d,, ds are derivations
of Fi, F,, respectively, such that dll F=d2[ F and d,(F) CF then d,®d;
denotes the derivation of Fi®pr F; determined by (d;®d;)(a®b)
=d;(a) ®b+a ®d:(b), for every aEF, and bE F..

do denotes the zero derivation of a field (it will be always clear
what field we have in mind). The underlying field of an ordinary
differential field § will be denoted by F.

2. LEMMA 1. If d, belongs to the center of ®¢ then the derivation
d1®d, of (C(G)®F) (=F(G)) commutes with every derivation d of
F(G) such that d(F) CF and dg*=g*d for every g&G(C).
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PROOF. Let d be as in the lemma. Then d—d,® (d| F) is zero on F
and commutes with G*(F) and so d—do®(d| F)EYp. But d;®d, be-
longs to the center of ®# and commutes with do® (d| F). Thus d,®d,
commutes with d=d—d,® (d| F) +do® (d| F).

LEMMA 2. Let Gy be a normal subgroup of G defined over C and let d°
be a derivation of F(G/G,) such that d°(C) =0 and d° commutes with
any element from (G/Gy)*(C). Then there exists an extension d' of d°
to a derivation of F(G) that commutes with G*(C).

Proor. Let g be a generic point of G over F(G). Extend d° to a
derivation d; of F(G) and let d; be the extension of d, to a derivation
of F(g)(G) which is trivial on C(g). Let V be a nonempty affine open
subset of G defined over C and let C[xl, oo, x,.] be the coordinate
ring of V over C. Then there exists h,& V(C) such that dixy, - « -+, dix,
are defined at ko. Hence, if a € F(g)(G) is defined at k, then dy(a) is
also defined at ho. In particular, for any e € F(G), d2((ghs?)*a) is
defined at &, (since ((ghi™?) *a) (ko) =a(g)). Let, for any a € F(G), d'(a)
be the element of F(G) such that d’'(a)(g) =d:((ghi") *a) (ko). One can
easily see that the definition of d’ does not depend on g. In particular,
if g1 is any point of G such that C(g1) = C(g), then g is generic for G
over F and so d'(e)(g1) =d:((gihi ) *a) (ko). Hence, for any AEG(C)
(h*d'(2))(g) = d'(a)(hg) = du((hghi")*a)(ho) = da((ghi™)*h*a)(ho)
=d'(h*a)(g), since C(hg) =C(g). Thus dih* =h*d,, i.e., d; commutes
with G(C)*. Moreover, d’ is a derivation of F(G). Indeed

d'(a + )(g)
= dy((ght)*(a + b)) (ho) = da((gha")*a)(ho) + do((gha™)b)(h0)
= d'(a)(g) + d'(d)(g)

and

d'(ab)(g) = da((ghi*)*ab) (ko) .
= da((gha*)*a) (ho) - (gha")*b(ho) + (gha)*a(ha) - da((ghs™)*b) (ko)
= d'(a)(g)-b(g) + a(g)-d'(B)(g).
Finally, if a€ F(G/G,) then
d'(a)(g) = dx((ghi™)*a) (ko) = d°((ghi")*a)(ho)
= (ghi")*d"(a) (ko) = d°(a)(p),
i.e., d’ is an extension of d% This completes the proof of the lemma.

LEMMA 3. Let G, be a connected central one-dimensional normal sub-
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group of an affine connected algebraic group G, both defined over F. Let
d,&®r be a derivation in the direction of Gi. Then, for any a S F(G),
di(a) =0 if and only if aE F(G/Gy). Moreover, there exists an element
bE F(G) — F(G/G) such that either di(b)=c-b or d1(b) =c, where c is
an element from F(G/Gy).

Proor. The first part of the lemma is well known. Let b’ be a
regular function on G such that '€ F(G) — F(G/G:). Then Gy (F)-b’
generates a finite-dimensional F-vector space. Since G; is one-dimen-
sional and connected, hence we may assume that this space is either
one-dimensional or two-dimensional with basis by, b’, where b,
EF(G/Gy) and g*(')=a(g)bo+b', aEF(G/G)) and a(g)#0 if
g#identity e of Gi. Then it follows from Lemma 7 [1] that in the
first case d,(b’) =cb’, where ¢ is an element from F(G/G;) and we may
take b="0'. In the second case (again by Lemma 7 [1]) aid}(b’) +c2di(d")
+cb’ =0, for some ¢, ¢, ;& F(G/Gy) which do not vanish simul-
taneously. Then 0 = g*(cid2(b’) + c2di (') + csb’) = cid2(b’) + c2ds(B’)
+c3(a(g)bo+b"), for every gE€Gi(F). Hence ¢3=0 and ¢; 0. If ¢;50,
then di(di(0)) = —ca/c1, di(b') %0, and we take b=d,(b’). If ¢c;=0,
then d2(b’) =0. Hence d,(b') € F(G/G,), and we take b=10".

LEMMA 4. Let § be an ordinary differential field with derivation d, let
C be the field of constants of § and suppose that § is of finite transcend-
ence degree over C. Let F, be a (differential) subfield of § which is not
contained in C and let ¢EC. Then there exist a1, a:EF1, a1707#a,,
such that there is no element y&F — C which satisfies either dy=ay-c or
dy=ascy.

Proor. We may suppose that F contains an element x such that
dx=1 (let x&€F;— C; then dx#0 and we may replace d by 1/dx-d).
If dy,=c/(x+n), y.&F—C, where n is an integer, then, one can
prove that the elements y;, for different integers 4, are algebraically
independent over C. Similarly, if dz,=x"cz,, then the elements z;, for
different integers ¢, are also algebraically independent over C. Hence
F contains only a finite number of elements y; and 2,. Thus, for some
7, Yn, 2, €F and the lemma is proved.

3. Proof of the theorem. Let d be the nonzero derivation of ¥ We
shall show that one can extend & to a derivation d* of F(G) which
commutes with G*(C) and has C as the field of constants. Proof by
induction on the dimension of G.

If dim G=0, then this is trivial.

Suppose that the above is true for connected nilpotent affine groups
of dimension # and let dim G=#n41. There exists a central connected
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normal subgroup G; of G defined over C and of dimension 1. Then
G/G, is an affine nilpotent connected group of dimension n. Hence
there exists an extension d° of d to a derivation of F(G/G;) such that
C is the field of constants of d® and d° commutes with (G/Gy)*(C). It
follows from Lemma 2 that d° can be extended to a dérivation d’ of
F(G) that commutes with G*(C). Let d,E®r be a derivation of F(G)
in the direction of G;. Then the field of constants of d; is F(G/G1)
and it follows from Lemma 1 that d; commutes with every derivation
ad’, where a & F. Therefore the set of all 6& F(G), for which d,(b)
=ad’(b), where ¢ is fixed, is a subfield F, of F(G) closed under d,
(and ad’). Indeed, it is easy to see that this is a field. Moreover, if
d,(b) =ad’'(b), then d,(d,(b)) =di(ad’ (b)) =ad’(d:1(b)). C is the field of
constants of d1| F, for a0, since the field of constants of d; is
F(G/G,) and the field of constants of ad’ l F(G/Gy) is C. And we want
to prove that F,=C, for some ¢ € F. Let a € F; consider the ordinary
differential field (F(G) ®. F(G/G:)) together with the derivation
ad’ ® dy and the algebraic closure (F(G) ®. F(G/G))* of
(F(G) ®.F(G/Gy))with the unique extension (ad'® do)* of (ad’ ® d,).
F, is linearly disjoint from F(G/G,) over C since F(G/G,) is the field
of constants of d; and C is the field of constants of d;| F, (see Proposi-
tion 1 in [3] or Lemma 1 in [1]). Hence there exists a subfield of
F(G) with d, which is canonically isomorphic to (F, ®, F(G/G)) with
(ad’| Fo) ® do. F(G) is an algebraic extension of the subfield unless
F,=C and this isomorphism maps b onto 1 ® b, for every b& F(G/G)).
Therefore F,C implies that there exists an isomorphism «, of
F(G) with d, into (F(G)) ®. F(G/Gy))* with (ad’ ® do)* such that
a,(b)=1 ® b, for every bE F(G/G,). It follows from Lemma 3 that
there exist elements ¢E F(G/G,) and y&E F(G) — F(G/G,) such that
either diy=c or d;y=cy. Therefore, for every a ©G, a0 for which
F,#C, we have that either (ed’ ®do)*a.(y) =1®c or (ad’ @dy)*as(y)
=(1®c)a.(v), i.e., either (&’ @do)*aa(y) =1Q®¢/a®1 or (d’ Qdo)*au(y)
=1Q®c¢/a®1 a,(y). But it follows from Lemma 4 that there exist
a1, a:EF such that neither (d'®dy)*2=1Q¢/a:®1 nor (d' ®dy)*z
= (1®c¢/a;®1)z has a solution z in (F(G) ® F(G/G.))*. Then a;#0a,
and either F,;=C or F,,=C. If F,=C, then ¢0 and the field of
constants of d*=(1/a)d,—d’ is C. Moreover, d* commutes with
G*(C). Thus we have proved by induction that there exists an ex-
tension d* of d that commutes with G*(C) and has C as the field of
constants.

Now if d* is such a derivation then F(G) with d* is a strongly
normal extension of § and G(C) is the Galois group of the extension
(see Proposition 1 and Theorem 1 in [1]).
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ON A REALIZATION OF A COMPLEMENTED ALGEBRA
PARFENY P. SAWOROTNOW

In this note we intend to show that each simple complemented
algebra is isomorphic to an algebra described in the example below
(asin [6] we use the term “simple” to mean “simple and semisimple”).
This paper can be considered as a continuation of [5] and [6].

In the example below (and in the proof of the theorem after it) we
use terms “summable” and “integrable” in the sense defined in
Chapter III of [3].

ExaMPLE. Let (S, u) be a measure space. Let K(s) be a real-valued
function defined on S and having the following properties:

(i) K(s) is finite almost everywhere,

(ii) there exists a positive number @ such that ¢ £K(s) for each
SES,

(iii) the restriction of K(s) to any summable subset of S is inte-
grable (in particular K(s) may be integrable).

Let 4 be the set of all complex-valued members x of L2(SX.S, uXu)
such that [f|x(¢, s)| 2K (s)dtds is finite. Then 4 is a complemented
algebra in the scalar product (x, y) = [[x(t, s) §(¢, s)K(s) dtds and the
multiplication (xy)(¢, s)=[x(¢, r)y(r, s)dr (we consider pointwise
addition and pointwise multiplication with a scalar). If K(s) isbounded
above then 4 is well complemented. Condition (ii) implies continuity
of the multiplication (in both factors simultaneously); if a=1 then

[lall <[l lls]-
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