ON THE STRUCTURE OF 7-REGULAR SEMIGROUPS
GERALD LOSEY!

1. Introduction. In this paper we shall investigate the structure of
semigroups satisfying certain chain conditions on ideals. We say that
an element a of a semigroup S is left w-regular if the chain of ideals
SDSaDSa2DSa?D - - - is finite. Equivalently, « is left w-regular
if there exists an integer >0 and an element x&.S such that xa !
=a" Right w-regularity is defined in a similar manner. The element
« is w-regular if it is both left and right 7-regular. Equivalently, « is
m-regular if there exist an integer #>0 and elements x and y in S
such that xa"t!=a"=a"tly. The property of w-regularity as used in
this paper and in [4] corresponds to the property of strong m-regu-
larity in the papers of Azumaya [1] and Drazin [2].

A subset G of S is said to be a group in S if it is a group under the
multiplication in S. Every group in S contains a unique idempotent
e of S. An element « of S is a group element of S if it belongs to some
group in S. The property of being a group element is equivalent to
the property of strong regularity in [1] and [2]. For each idempotent
e of S the set of all elements of S belonging to some group with
identity e is itself a group in S, denoted by G., the unique maximal
group in S containing e (Kimura [3]). In [4] it is shown that an
element o of S is w-regular if and only if a” is a group element for
some #. It is this property which we shall exploit in this investigation.

In §2 we give some results needed in the later sections and prove
a result on the decomposition of a w-regular element in a ring. In
§3 we show that a semigroup in which every element is w-regular is
the union of simpler systems which we shall call proto-groups. Some
conditions are given under which this union is disjoint. In the final
section we examine the structure of proto-groups in terms of semi-
group extensions.

2. Some properties of w-regular semigroups and rings. Let @ be a
w-regular element of the semigroup .S and let xa*tl=a*=qa"t'y. In
[2], Drazin shows the existence of a unique element 3E S having the
properties: (i) Ba=af, (ii) fart!'=ar=a"B, and (iii) oB2=L. If we
set e=of3 then e?=a?B?=a-af?*=af=¢ and so e is idempotent.
Moreover, we have fe=Pof=f and thus fre=p"; also a"e=a"t3
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=oa" and a"f"=(af)"=e¢"=e. Consequently, a® and 8" are inverse
elements in the group G.. The relations (ae)8= (af)e=¢’=¢, ae-e=ce
and fBe=p show that ae and § are inverse elements in G,. Thus in the
terms used in this paper Drazin's result may be stated:

THEOREM 2.1. Let a be a w-regular element of a semigroup S. Then
there exists an integer n>0, a unique idempotent e in S and a unique
element B of S such that (i) o® and B are inverse elements of G, and
(ii) ae and B are inverse elements of G.. Conversely, if « S and a™ is a
group element for some integer n>0 then a is w-regular.

The condition that « is w-regular if and only if a” is a group element
for some # is clarified somewhat by the next theorem. Before stating
this result we remark that a semigroup S can always be imbedded in
the multiplicative structure of at least one ring, namely the semigroup
ring of S with integral coefficients, say. Moreover if « is w-regular in
S then it is w-regular in any ring containing S.

THEOREM 2.2. Let a semigroup S be imbedded in the multiplicative
structure of a ring R. Then a &S is w-regular in S if and only if a=a
“+ao where

(1) oy s a group element in S,

(ii) ao 2s a nilpotent element of R,

(iii) Olg0l] = 010y = 0.

Proor. If conditions (i)-(iii) hold for the element &S then
a*=af+ay=0a} for large enough #. Since o, is a group element in S
so is of. Hence a” is a group element and so « is 7-regular.

Suppose now that «a €S is w-regular and a*<G,. Then ae€G.. Set
ay=cae and ay=a—ae. Then a=a;+ays Moreover ae(a—ae) =ae
—a%=0 and so aag=ao;=0. Thus a*=aj+aoj. But a®=a} and
hence ap=0, that is, @, is nilpotent.

We say that a semigroup or ring is 7-regular if every element is
w-regular. The following corollary for m-regular rings shows a resem-
blance to Fitting’s lemma for rings of endomorphisms.

CoOROLLARY 2.3. A ring R is w-regular if and only if every element
15 the orthogonal sum of a group element and a nilpotent element.

3. Unions of proto-groups. Let S be a semigroup. For each idem-
potent e define T, to be the set of all ® € S such that a*EG, for some
n>0. If S is w-regular then S=UT,, the union taken over all idem-
potents of S, is a partition of S into disjoint subsets. If «E T, let
(G., a) be the subsemigroup of S generated by G. and «. Then (G., )
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has the properties that it has a unique maximal group and for any
BE(G,, ), some power of B belongs to this group. So, in general, we
say that a semigroup P is a proto-group

(i) if P contains a unique maximal group G;

(ii) if € P then a"EG for some n>0.
We remark that a nil semigroup is a proto-group with idempotent 0.
It follows immediately that every proto-group is w-regular. From the
above remarks we see that a w-regular semigroup is the (not neces-
sarily disjoint) union of proto-groups. In fact,

THEOREM 3.1. A semigroup S is w-regular if and only if S is the
union of proto-groups.

The union will be disjoint if and only if each of the T, defined above
is a subsemigroup of S. In this case T, will itself be a proto-group with
unique maximal group G,.. We have not yet discovered a satisfactory
set of necessary and sufficient conditions that a semigroup be a dis-
joint union of proto-groups. However, two sufficient conditions are
given in

THuEOREM 3.2. If S is commutative or if all the idempotents of S are
primitive then S is w-regular if and only if S is a disjoint union of
proto-groups.

Proor. Suppose S is commutative. If «, BE€ T, then a™, f*EG, for
some m, n>0. Set N=max(m, n). Then (ef)¥=a"B¥EG, and so
of&T,. Thus, T, is a proto-group.

Now suppose that every idempotent of S is primitive; that is, if
e and f are idempotents of S such that ef=fe=¢ then e=f. Let
o, BET, and ofE Ty, e and f idempotents of S. By Theorem 2.1,
ae = ea, Be = ¢B and (af)” € G, for some n > 0. Hence, (af)"
= [(ce) (Be) |*=e(aB)*EG.. Let v be the inverse of (af)"e¢ in G.; then,
since (aB)*E Gy, e=ve(af)"=ve(aB)"f =v(afB)"ef =¢f. Similarly, e=fe.
Since all idempotents are primitive this implies e=f and so afE T..
Therefore, T, is a proto-group.

If e and f are idempotents of S, then we say that f dominates e, or
f>e, if ef =fe=e. Thus, an idempotent ¢ is primitive if it is minimal
in the sense that ¢ dominates no idempotent other than itself. We
shall say that e is a maximal idempotent if no idempotent other than
e dominates e.

The following corollary can be extracted from the above proof.

CoROLLARY 3.3. If a and BE T, then oS Ty where f> e. In particu-
lar, if e is a maximal idempotent of S then T, is a proto-group.
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4. The structure of proto-groups.

THEOREM 4.1. Let P be a proto-group with unique maximal group G.
Then G is the unique minimal ideal of P. Moreover, the Rees factor
semigroup P/G is a nil semigroup.

PRroOF. Let I be any ideal of P and a& . If e is the identity of G
then ae©& I and ae©G. Hence, I contains an element of G and there-
fore I contains all of G. If a & P and BEG, then af=a(ef) = (ae)BEG
and so G is an ideal of P contained in every ideal of P.

Since G is an ideal we may form the Rees factor semigroup (Rees
[5]) P/G. For any aEP, a*EG for some n. Hence, we have a»=0
where @ is the image of @ in P/G. Thus, P/G is nil.

Let S be a semigroup, P a proto-group with idempotent ¢ and
g: S—P a homomorphism of .S onto P. We define the kernel N of ¢
to be the set of all x&S such that o(x) =e. Clearly, N is a subsemi-
group of S.

Let N be a semigroup and P a proto-group. A semigroup S is said
to be an extension of N by P if NCS and if there exists a homomor-
phism ¢: S—P with kernel N. We shall say that S is a split extension
of N by P if there exists a subset P’ of S such that ¢: P’—P is an
isomorphism of P’ onto P. It follows that NN\P’'= {¢’'} where ¢’ is
the unique inverse image of e in P’. Thus, we may (and will) assume
that in a split extension PC.S.

TuEOREM 4.2. Every proto-group is a split extension of a nil semi-
group by a group.

ProoF. Let G be the unique maximal group in the proto-group P
and let e be its idempotent. Then a—ae is a homomorphism of P onto
G leaving the elements of G fixed. Thus, P is a split extension of the
kernel of this homomorphism by G. The kernel N consists of all « &P
such that ae=e. If « &N then there exists an integer #>0 such that
oa"&G,. Hence, a®=a"e= (ce)” =e. Thus we see that e is the zero ele-
ment of N and that N is nil.

It is not true, however, that every split extension of a nil semigroup
by a group is a proto-group. But we can prove

THEOREM 4.3. If P is a split extension of a nil semigroup N by a
group G, then G is the unique maximal group and unique minimal ideal
of P. Moreover, if o: P—G is the homomorphism giving the extension and
e 1s the identity of G, then o(a) =ae for all a & P.

Proor. We assume that G is imbedded in P and NN\G = {e}. Since
¢€ N and e*=e for all n it follows that ¢ must be the zero element
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of N. Let aEP. Since o(a) EG there exists FEG such that o(a)B
=Ro(a) =e. But ¢(B) =8 and so o(aB) = (Ba) =e¢; thus, af and faE N.
Hence we have e =afe=e=¢efBa=La. Since B is the inverse of o(c)
we have ae=a(B0(a)) = (af)d(a) =ec(a) =0(a). Thus, o(a) =ae=ca
for all a&P. It follows that G is the unique maximal group and
unique minimal ideal of P.

COROLLARY 4.4. A split extension of a nil semigroup by a periodic
group is a proto-group.

Proor. If aE P, the split extension of the nil semigroup N by the
periodic group G, then ae&G. Hence, (ae)" =ame =¢ for some positive
n. Therefore, a®EN. But N is nil and so (a")»=e&EG. Therefore, P
is a proto-group.

By using the property of a proto-group given in 4.1 and the result
of 4.3, we can give necessary and sufficient conditions that a semi-
group be a proto-group.

THEOREM 4.5. Let P be a split extension of a nil semigroup N by a
group G. Then P is a proto-group if and only if the Rees factor semi-
group P/G is a nil semigroup.

ProoF. The necessity has already been shown. If P is a split ex-
tension of G by N then G is an ideal of P and so P/G is defined. If
aEP then a*=0 in P/G for some # where & denotes the image of a
in P/G. This is equivalent to saying a"&G. Hence, P is a proto-group.
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