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1. Introduction. In this paper we shall investigate the structure of

semigroups satisfying certain chain conditions on ideals. We say that

an element a of a semigroup 5 is left Tr-regular if the chain of ideals

S^Sa^Sa2^Sa3^. • • • is finite. Equivalently, a is left T-regular

if there exists an integer «>0 and an element xES such that xan+l

= an. Right 7r-regularity is defined in a similar manner. The element

a is ir-regular if it is both left and right 7r-regular. Equivalently, a is

7r-regular if there exist an integer «>0 and elements x and y in 5

such that xan+l = an = an+1y. The property of ^-regularity as used in

this paper and in [4] corresponds to the property of strong 7r-regu-

larity in the papers of Azumaya [l] and Drazin [2].

A subset G of 5 is said to be a group in 5 if it is a group under the

multiplication in 5. Every group in 5 contains a unique idempotent

e oí S. An element a of S is a group element of 5 if it belongs to some

group in 5. The property of being a group element is equivalent to

the property of strong regularity in [l ] and [2]. For each idempotent

e of S the set of all elements of S belonging to some group with

identity e is itself a group in S, denoted by Ge, the unique maximal

group in 5 containing e (Kimura [3]). In [4] it is shown that an

element a of S is ir-regular if and only if a" is a group element for

some «. It is this property which we shall exploit in this investigation.

In §2 we give some results needed in the later sections and prove

a result on the decomposition of a ir-regular element in a ring. In

§3 we show that a semigroup in which every element is 7r-regular is

the union of simpler systems which we shall call proto-groups. Some

conditions are given under which this union is disjoint. In the final

section we examine the structure of proto-groups in terms of semi-

group extensions.

2. Some properties of x-regular semigroups and rings. Let a be a

7r-regular element of the semigroup 5 and let xan+1 = an = a"+1y. In

[2], Drazin shows the existence of a unique element ßES having the

properties: (i) ßa = aß, (ii) ßan+1=an = an+lß, and (iii) aß2=ß. If we

set e = aß then e2=a2ß2 = a-aß2=aß = e and so e is idempotent.

Moreover, we have ße=ßaß=ß and thus ßne = ß"; also ane = an+1ß
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= a" and anßn = (aß)n = e" = e. Consequently, an and ßn are inverse

elements in the group Ge. The relations (ae)ß = (aß)e = e2 = e, ae-e=ae

and ße = ß show that ae and ß are inverse elements in Ge. Thus in the

terms used in this paper Drazin's result may be stated:

Theorem 2.1. Let a be a ir-regular element of a semigroup S. Then

there exists an integer n > 0, a unique idempotent e in S and a unique

element ß of S such that (i) an and ßn are inverse elements of G, and

(ii) ae and ß are inverse elements of Ge. Conversely, if a £5 and a" is a

group element for some integer n > 0 then a is tr-regular.

The condition that a is x-regular if and only if an is a group element

for some n is clarified somewhat by the next theorem. Before stating

this result we remark that a semigroup 5 can always be imbedded in

the multiplicative structure of at least one ring, namely the semigroup

ring of S with integral coefficients, say. Moreover if a is x-regular in

5 then it is x-regular in any ring containing S.

Theorem 2.2. Let a semigroup S be imbedded in the multiplicative

structure of a ring R. Then aES is w-regular in S if and only if a = cti

+a0 where

(i) «i is a group element in S,

(ii) a0 is a nilpotent element of R,

(iii) ctoCii = «itto = 0.

Proof. If conditions (i)-(iii) hold for the element aES then

a" = a"+a% = a" for large enough n. Since «i is a group element in 5

so is a" Hence an is a group element and so a is 7r-regular.

Suppose now that aES is 7r-regular and anEGe. Then aeEGe. Set

ai = ae and a0 = a — ae. Then a = o:i+a:o. Moreover ae(a — ae) =a2e

— a2e = 0 and so aiao = a0«i = 0. Thus a" = a"+aj. But an = a" and

hence «0 = 0, that is, ao is nilpotent.

We say that a semigroup or ring is x-regular if every element is

x-regular. The following corollary for 7r-regular rings shows a resem-

blance to Fitting's lemma for rings of endomorphisms.

Corollary 2.3. A ring R is -n-regular if and only if every element

is the orthogonal sum of a group element and a nilpotent element.

3. Unions of proto-groups. Let 5 be a semigroup. For each idem-

potent e define Te to be the set of all a ES such that anEGe for some

»>0. If 5 is x-regular then 5 = U Te, the union taken over all idem-

potents of 5, is a partition of 5 into disjoint subsets. If aETe let

(Ge, a) be the subsemigroup of 5 generated by Ge and a. Then (Ge, a)
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has the properties that it has a unique maximal group and for any

ßE(Ge, a), some power of ß belongs to this group. So, in general, we

say that a semigroup P is a proto-group

(i) if P contains a unique maximal group G;

(ii) if aEP then anEG for some w>0.

We remark that a nil semigroup is a proto-group with idempotent 0.

It follows immediately that every proto-group is 7r-regular. From the

above remarks we see that a 7r-regular semigroup is the (not neces-

sarily disjoint) union of proto-groups. In fact,

Theorem 3.1. A semigroup S is ir-regular if and only if S is the

union of proto-groups.

The union will be disjoint if and only if each of the Te defined above

is a subsemigroup of S. In this case T, will itself be a proto-group with

unique maximal group Ge. We have not yet discovered a satisfactory

set of necessary and sufficient conditions that a semigroup be a dis-

joint union of proto-groups. However, two sufficient conditions are

given in

Theorem 3.2. If S is commutative or if all the idempotents of S are

primitive then S is ir-regular if and only if S is a disjoint union of

proto-groups.

Proof. Suppose S is commutative. If a, ßET, then am, ß"EG, for

some m, «>0. Set A = max(m, »). Then iaß)N = aIfßNEG, and so

aßET,. Thus, T, is a proto-group.

Now suppose that every idempotent of 5 is primitive; that is, if

e and / are idempotents of S such that ef=fe = e then e=f. Let

a, ßET„ and aßETf, e and / idempotents of 5. By Theorem 2.1,

ae = ea, ße = eß and (a/3)" G Gj for some « > 0. Hence, iaß)"e

= [iae)iße)]n = eiaß)nEGe. Let 7 be the inverse of iaß)"e in Ge; then,

since iaßYEGf, e=yeiaß)n = yeiaß)nf=yiaß)"ef=ef. Similarly, e=fe.

Since all idempotents are primitive this implies e=f and so aßET,.

Therefore, T, is a proto-group.

If e and / are idempotents of S, then we say that / dominates e, or

/> e, if ef=fe = e. Thus, an idempotent e is primitive if it is minimal

in the sense that e dominates no idempotent other than itself. We

shall say that e is a maximal idempotent if no idempotent other than

e dominates e.

The following corollary can be extracted from the above proof.

Corollary 3.3. // a and ßE T, then aßE T¡ where f> e. In particu-

lar, if e is a maximal idempotent of S then T, is a proto-group.
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4. The structure of proto-groups.

Theorem 4.1. Let P be a proto-group with unique maximal group G.

Then G is the unique minimal ideal of P. Moreover, the Rees factor

semigroup P/G is a nil semigroup.

Proof. Let I be any ideal of P and aEL If e is the identity of G

then aeEI and aeEG. Hence, I contains an element of G and there-

fore 1" contains all of G. If aEP and ßEG, then aß = a(eß) = (ae)ßEG

and so G is an ideal of P contained in every ideal of P.

Since G is an ideal we may form the Rees factor semigroup (Rees

[5]) P/G. For any aEP, anEG for some n. Hence, we have än = Ü

where ä is the image of a in P/G. Thus, P/G is nil.

Let S be a semigroup, P a proto-group with idempotent e and

a: S—^P a homomorphism of 5 onto P. We define the kernel N oí a

to be the set of all xES such that a(x) =e. Clearly, N is a subsemi-

group of 5.

Let N be a semigroup and P a proto-group. A semigroup S is said

to be an extension of N by P if NÇ.S and if there exists a homomor-

phism a: S—>P with kernel IV. We shall say that S is a split extension

of IV by P if there exists a subset P' of 5 such that o-: P'—*P is an

isomorphism of P' onto P. It follows that NC\P' = {e'} where e' is

the unique inverse image of e in P'. Thus, we may (and will) assume

that in a split extension PCS.

Theorem 4.2. Every proto-group is a split extension of a nil semi-

group by a group.

Proof. Let G be the unique maximal group in the proto-group P

and let e be its idempotent. Then a-^ae is a homomorphism of P onto

G leaving the elements of G fixed. Thus, P is a split extension of the

kernel of this homomorphism by G. The kernel N consists of all aEP

such that ae — e. If aEN then there exists an integer «>0 such that

anEGe. Hence, an = ane=(ae)n = e. Thus we see that e is the zero ele-

ment of N and that IV is nil.

It is not true, however, that every split extension of a nil semigroup

by a group is a proto-group. But we can prove

Theorem 4.3. If P is a split extension of a nil semigroup N by a

group G, then G is the unique maximal group and unique minimal ideal

of P. Moreover, if a : P-^>G is the homomorphism giving the extension and

e is the identity of G, then <r(a) =ae for all aEP.

Proof. We assume that G is imbedded in P and Ni\G= {e}. Since

eEN and e" = e for all « it follows that e must be the zero element
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of A. Let aEP. Since aia)EG there exists ßEG such that (r(a)/3

= /3<r(a) =e. But <r(/S) = /3 and so <riaß)=aißa)=e; thus, a/3 and ßaEN.

Hence we have aß = aße = e = eßa=ßa. Since ß is the inverse of cr(a)

we have ae = a(/3cr(a)) = (a/3)a(a) =eaia) =a(a). Thus, o"(a)=ae = ea

for all aGP. It follows that G is the unique maximal group and

unique minimal ideal of P.

Corollary 4.4. A split extension of a nil semigroup by a periodic

group is a proto-group.

Proof. If aEP, the split extension of the nil semigroup N by the

periodic group G, then aeEG. Hence, iae)n = ane — e for some positive

n. Therefore, anEN. But A is nil and so ian)m = eEG. Therefore, P

is a proto-group.

By using the property of a proto-group given in 4.1 and the result

of 4.3, we can give necessary and sufficient conditions that a semi-

group be a proto-group.

Theorem 4.5. Let P be a split extension of a nil semigroup N by a

group G. Then P is a proto-group if and only if the Rees factor semi-

group P/G is a nil semigroup.

Proof. The necessity has already been shown. If P is a split ex-

tension of G by A then G is an ideal of P and so P/G is defined. If

aGP then ä" = 0 in P/G for some « where ä denotes the image of a

in P/G. This is equivalent to saying anEG. Hence, P is a proto-group.

References

1. G. Azumaya, Strongly ir-regular rings, J. Fac. Sei. Hokkaido Univ. Ser. I 13

(1954), 34-39.
2. M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math.

Monthly 65 (1958), 506-514.
3. N. Kimura, Maximal subgroups of a semigroup, Ködai Math. Sem. Rep. 1954

(1954), 85-88.
4. G Losey and H. Schneider, Group membership in rings and semigroups, Pacific

J. Math. 11 (1961), 1089-1098.
5. D. Rees, On semigroups, Proc. Cambridge Philos. Soc. 36 (1940), 387-400.

University of Wisconsin


