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CONCERNING CONTINUOUS IMAGES OF
COMPACT ORDERED SPACES

L. B. TREYBIG!

It is the purpose of this paper to prove that if each of X and ¥
is a compact Hausdorff space containing infinitely many points, and
X XY is the continuous image of a compact ordered space L, then
both X and Y are metrizable.? The preceding theorem is a generaliza-
tion of a theorem [1] by Mardesi¢ and Papié, who assume that X, ¥,
and L are also connected. Young, in [3], shows that the Cartesian
product of a “long” interval and a real interval is not the continuous
image of any compact ordered space.

In this paper, the word compact is used in the “finite cover” sense.
The phrase “ordered space” means a totally ordered topological space
with the order topology. A subset M of a topological space is said
to be heriditarily separable provided each subset of M is separable.
If @ and b are points of an ordered space L and a<b, then [a, b]
((e, b)) will denote the set of all points x of L such that a=<x=<b
(a<x<b), provided there is one; also, [a, b] will be used even in the
case where ¢ =b. A subset M of an ordered space L is convex provided
that if a€EM, bEM, and a<b, then [a, b]C M. If M is a subset of
an ordered space L, then G(M) will denote the set of all ordered pairs
(a, b) such that (1) e EM, bE M, and ¢ <b, and (2) {a, b} =M"[a, b],
provided there is one.

LEMMA 0. If M is a compact subset of the ordered space L, then the
relative topology of L on M is the same as the order topology on M.
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LeMMA 1. If M is a nondegenerate, totally disconnected, compact sub-
set of an ordered space L, then M 1is metrizable if and only if G(M) s
countable.

Proor. Suppose M is metrizable. Since a compact Hausdorff space
is metric if and only if it satisfies the second axiom of countability,
there is a countable sequence I, I, - - -+ such that (1) for each #,
I, is a convex open subset of L, and (2) I+ M, I,-M, - -- is a
countable basis for M. There exists a transformation T from G(M)
into the ordered pairs of positive integers such that if (¢, b)) EG(M)
and T((a, b))=(p, ¢), then I, {a, b} =a and I,-{a, b} =b. T is
easily seen to be a one-to-one transformation, so G(M) is evidently
countable. '

Suppose G(M) is countable. Let the elements of G(M) be labeled
(a1, by), (@, bg), - - - . Let H denote a collection such that hEH if
and only if (1) there is a positive integer 7 such that % is the set of all
points of M which precede b, or k is the set of all points of M which
follow a; or (2) there exist integers ¢ and j such that k= M- [b;, a;].
H is a countable basis for M, so M is metrizable.

LEMMA 2. If M is a separable subset of the ordered space L, then M is
hereditarily separable.

Proor. Suppose H is a subset of M. There is a countable set
Py, Py, - -+ dense in M such that if P& M, then for some integer
pair (¢, j), P;SP < P;. For each integer pair (3, j) such that P;<P;
and [P;, P;]- H exists, let H;; denote a countable subset of [P;, P;]-H
such that if PE [P;, P;]-H, then there exists R in H;; and S in Hj;
such that RSP <S. Y H, is easily seen to be a countable set dense
in H.

LemMA 3. If M is a nonconnected, separable, compact subset of the
ordered space L, then M is metrizable if and only if G(M) is countable.

LeMMA 4. If the continuous function fi maps the compact ordered
space Ky onto the Hausdorff space S, then there is a compact ordered
space Ky and a continuous function fo mapping Ko onto S such that
(1) if K is a closed proper subset of K, then f2(K) #S, and (2) if x and
v are elements of K, such that fo(x) =f2(y), there is an element z of K,
between x and y such that fo(z) #fa(x).

Proor. Let H denote the set of closed subsets m of K such that
film)=S. Define a partial order < on H by saying m;<m, if and
only if m; Cma. It is easily verified that each chain has a lower bound,
so Zorn's lemma applies here, and H has a minimal element K.
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For each point x of K let K, denote the union of all the subsets %
of K such that (1) xEE, (2) kis convex relative to K, and (3) if yEE,
then fi(y) =fi(x). Each K, is closed, and if x and y are elements of K,
then either K,=K, or K,CK —K,. Let K, denote the set of all K,
for x€K, and suppose U is open in K if and only if U* is open in K.3
Suppose that K is given the natural order induced by the order on
K, and that f,, which maps K; onto S, is defined by fo(K.) =fi(x). The
space K, and the function f; satisfy the conclusion of the lemma.

LEMMA 5. If the continuous function f maps the compact metric space
R onto the Hausdorff space S, then S is metrizable.

PROOF FOR THE CASE WHERE S IS NONDEGENERATE. Let Ry, Ry, - + *
denote a countable basis for R. Let T denote a collection such that
UET if and only if there exists two points s; and s, of .S and a finite
integer sequence ji, ja, * * * , j» such that f~1(s;) C D_R;,, f~(ss) CR
— >°R;,, and U=S—f(R— X R;). The collection T is a countable
basis for the compact Hausdorff space .S, so S is metrizable.

LEMMA 6. If the continuous function f maps the compact ordered space
K onto the infinite, compact Hausdorff space S, then there exists a se-
quence Xo, X1, * + + of distinct elements of S such that x,, %o, - - - con-
verges to Xo.

PROOF. Let ¥y, 3, + - - denote a sequence of distinct elements of .S,
and for each #, let 2, denote an element of f~*(y,). There is an increas-
ing sequence of integers #y, 75, + + - such that 2., 2., - -+ - is mono-
tone, and since K is compact, there is a point 2z such that the latter
sequence converges to z. There is a subsequence ji, j» + - of
m, g, -+ such that f(z;,)#f(2), =1, 2, --. The sequence
Xo, X1, + - + defined by xo=f(2) and x;=f(z;,), 1= 1, satisfies the con-
clusion of the lemma.

PRrROOF OF THEOREM. Suppose that X is not metrizable. Let % de-
note an element of X, and let g map L continuously onto X X Y. Since
{u} X Y is the continuous image of a compact ordered space, an ap-
plication of Lemma 6 yields an infinite sequence of distinct points
(u, b), (u, b)), (u, by), - - -, all lying in {u} XY, such that (u, by),
(u, bs), - -+ -+ converges to (u, b). The space Z= {b, by, by, ¢ - - } with
the relative topology of Y is an infinite compact Hausdorff space, and
the space X XZ is the continuous image of a compact ordered space,
so there exists a compact ordered space K and a continuous function f
mapping K onto X XZ such that the conclusions of Lemma 4 hold.

3 If U is a collection of point sets, then U™* denotes the sum of the sets of the col-
lection U.
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For each positive integer », let H, denote a partition of X XZ into
the following #+1 open and closed sets: X X {bl}, XX {bz}, ce e,
XX {b,.}, XX {b, Dny1y Onga, © - } For each #, let K, denote the set
of all f~1(h) for hE H,, and let I, denote a partition of K into convex
open and closed sets such that if /&I, there is an element % of K,
such that I Ck. Since K is compact, each I, is a finite collection. Let
C denote a point set to which a point P belongs if and only if there
is an integer # and an element I of I, which intersects f~(X X {b})
such that P is either the right-most point of this intersection or the
left-most. C is a countable set which will be shown to be dense in
X x{o}).

Suppose the set f~1(X X {b}) contains an open set U. Let P denote
an arbitrary point of f~1(X X {b }) and suppose f(P) = (x, b). For each
n let Q, denote an element of f~'(x, b,). Some subsequence of the Q,’s
converges to a point Q in K — U, and the continuity of f implies that
f(Q) =(x, b). Therefore, f(K—U)=X XZ, which is a contradiction.
Now suppose that PEf(X X {b }) and R<P <S. There is a positive
integer # and a point Q of f~1(X X {b,,}) in (R, S). Suppose P<Q<S.
There is an element I of I, containing P, but not Q, and the right-
most point T of I-f~1(X X {b}) is an element of C satisfying PST
< S. This case clearly shows why C is dense in f~1(X X {b } ).

The separability of f~1(X X {b}) implies that X X {b} is separable,
and consequently, that X X Z is separable. Let {Rl, Ry, - - - } denote
a countable set dense in X X Z, and for each # let P, denote an ele-
ment of f~1(R,). The set K’=cl(Y_P,) is a closed subset of K such
that f(K')=XXZ, so K’ =K and K is separable.

It will now be shown that X X Z satisfies the first axiom of counta-
bility.* Let P denote an arbitrary point of X XZ. Since f~1(P) is com-
pact and K —f~1(P) is separable, it follows by an easy argument that
there is a countable set {Ql, Qs - - - } dense in K —f~1(P) such that
if x€f~1(P) and yEK —f~1(P), there is a Q; such that x<Q;=<y or
y=<Q:<x. For each positive integer #, let V, denote a collection to
which v belongs if and only if there is a point z of f~!(P) such that v
is the maximal convex subset of K which contains z and does not
intersect Y v Q.. Since, for each #, V.* is an open subset of K con-
taining f~!(P), it follows that the set Th=XXZ—f(K—V,¥) is an
open subset of X XZ containing P. Suppose Q is an arbitrary point
of X XZ distinct from P, that z&f~1(Q), and also, for example, that
2, is the last point of f~!(P) which precedes z and z; is the first point
of f~1(P) which follows z. There exist an integer j; and an integer jq

¢ It also may be shown from [2] that X X Z satisfies the first axiom of countability.
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such that 2, <Q;, <2< (Q;,<2. The set V*, where j=max(ji, j2), does
not contain z, so the set T; does not contain Q. Therefore, Ty, T, - - -
is a countable sequence of open sets having only P in common.

The set f~1(X X { b, }) is not metrizable, since that would imply that
X is metrizable. Since Lemma 2 implies that f~2(X X {bl}) is separa-
ble, Lemma 3 implies that Gi=G(f!(X X {b:})) is uncountable.
There does not exist an uncountable subcollection U, of G; such that
if (x, y)E U, then f(x) =f(y); for if there does, the conditions on f
imply that for (x, y) € Uy, there is a P; such that x <P, <y, which is
a contradiction. Suppose there is an uncountable subcollection U, of
G, and a point x of X such that if (z, w) E Us, then f(z) = (x, b)) or
f(w) = (x, by). There is an uncountable subcollection U; of U, such
that if (z, w) € Us and f(z) = (x, b1), then f(w) # (x, b1). The fact that
X XZ has a countable basis at (x, b;) implies that there is an open set
U containing (x, b;) and an uncountable subcollection U, of U; such
that if (2, w)&E U, and f(z) € U, then f(w) E(X XZ)— U. There is a
point ¢ of K such that each open set containing ¢ contains uncountably
many elements (z, w) of U, The continuity of f would imply that
f(¢) = (x, by) and that f({) E(X XZ)— U, which is a contradiction.

Let C denote the collection of all subsets M of G; such that if
(9, @) and (p’, ¢') are elements of M then f(p), f(g), f(#"), and f(¢')
are four distinct points. C is partially ordered by inclusion, and each
chain has an upper bound, so Zorn’s lemma implies the existence of
a maximal element W. Suppose W is countable. Let D denote the set
of all elements (p, g) of G; such that there is an element (p’, ¢') of W
such that f(p) =f(p") or f(q'), or f(q) =f(p’) or f(¢’). D is countable,
so there is an element (p, ¢) of G — D such that f(p) #f(q). However,
W+ {(p, g)} is an element of C containing W, so W is not maximal.
This is a contradiction, so W is uncountable.

It will now be shown that if x; and x; are points in X, then there
is a positive integer N such that if #>N, 2 &f (%1, b,), and
2,Ef1(xs, b,), then there is a point of K between 2z; and 2. On the
contrary, suppose there exist points x; and x; of X and an increasing
sequence of integers 71, 75, + - - such that for each 7 there exist points
z; and w; of f~1(xy, b,,) and f~'(x,, bn,), respectively, such that no
point of K lies between z; and w;. There is a point z of K such that
each open set about z contains, for infinitely many integers ¢, both
z; and w;. But the continuity of f would imply that f(z) = (x;, b) and
also that f(z) = (x;, b), which is a contradiction.

Let V denote the set of all ordered pairs (x, ¥) such that there is
an element (2, w) of W such that f(z) = (x, b)) and f(w)=(y, by).
There is a positive integer N and an uncountable subcollection V; of
V such that if (x, y) € Vi, 2Ef~1(x, by), and wE&f~(y, by), then there
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is some point of K between z and w. Let T; denote a set to which ¢
belongs if and only if there exist integers < and j such that ¢ is maximal
with respect to the property of being a convex subset of K which
contains neither P; nor P;. Let T denote a collection to which ¢ be-
longs if and only if t¢& T} or ¢ is the union of a finite number of ele-
ments of Ti. The collection T is countable and has the property that if
(%, ¥) € V1 then there exist elements # and f, of T such that f~!(x, by)
ChCK—fYy, by) and f~(y, by) Ct2 CK —f~1(x, by). This is easily
seen, because for each z in f~1(x, by), for example, there is an element
t, of T, which contains z and does not intersect f~!(y, by), and
f~U(x, by) is covered by a finite number of the ¢,’s.

Let S; denote a collection to which an element s belongs if and
only if there is an element ¢ of Ty such that (s X {bN}) =XX {bN}
—f(K—1t)- (XX {bN}). S1 is a countable collection of open subsets of
X such that if (x, y) € V;, there exist elements s; and s; of S; such that
xECX—{y} and yE5,CX — {x}. Since S is countable and V; is
uncountable, there is an element s of S; and an uncountable subcol-
lection V; of Vi such that if (x, y)E Vs, then xEsCX — {y} Since
f is continuous and s X {bl} is open in X X Z, it follows that
fUsX {bl}) is open in K.

Let W; denote the collection of all elements (¢, d) of W such that
there is an element (x, ¥) of V; such that (f(c); f(d)) = (x, by; ¥, by). If
(¢, EW,, cEf Y sX {b:}) and dEK —f~'(s X {b:}). For each pair
(¢, @) of Wy let U(c) denote a convex open subset of K such that
c€U(c) and U(c) CfY(sX {b:1}). The set of all U(c)’s is uncountable
and no two of them intersect, so K is not separable. This yields a
contradiction, so X is metrizable.

One interesting application of the preceding theorem is the follow-
ing

THEOREM. If a space X is the continuous image of a compact ordered
space and can be expressed as an infinite product (HX i), where each
X is a nondegenerate compact Hausdorff space, then (1) the product is
a countable product, and (2) each X, is metrizable.
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