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CONCERNING CONTINUOUS IMAGES OF
COMPACT ORDERED SPACES

L. B. TREYBIG1

It is the purpose of this paper to prove that if each of X and Y

is a compact Hausdorff space containing infinitely many points, and

X X Y is the continuous image of a compact ordered space L, then

both X and Fare metrizable.2 The preceding theorem is a generaliza-

tion of a theorem [l ] by Mardesic and Papic, who assume that X, Y,

and L are also connected. Young, in [3], shows that the Cartesian

product of a "long" interval and a real interval is not the continuous

image of any compact ordered space.

In this paper, the word compact is used in the "finite cover" sense.

The phrase "ordered space" means a totally ordered topological space

with the order topology. A subset M of a topological space is said

to be heriditarily separable provided each subset of M is separable.

If a and b are points of an ordered space L and a<b, then [a, b]

((a, b)) will denote the set of all points x of L such that a = x = ô

(a<x<b), provided there is one; also, [a, b] will be used even in the

case where a = b. A subset M of an ordered space L is convex provided

that if aEM, bEM, and a<b, then [a, b]CM. If M is a subset of
an ordered space L, then G(M) will denote the set of all ordered pairs

(a, b) such that (1) aEM, bEM, anda<Z>, and (2) {a, b} =M- [a, b],

provided there is one.

Lemma 0. If M is a compact subset of the ordered space L, then the

relative topology of L on M is the same as the order topology on M.
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Lemma 1. If M is a nondegenerate, totally disconnected, compact sub-

set of an ordered space L, then M is metrizable if and only if G(M) is

countable.

Proof. Suppose M is metrizable. Since a compact Hausdorff space

is metric if and only if it satisfies the second axiom of countability,

there is a countable sequence I\, I2, • ■ ■ such that (1) for each »,

/„ is a convex open subset of L, and (2) Ii-M, I2-M, • ■ • is a

countable basis for M. There exists a transformation T from G(M)

into the ordered pairs of positive integers such that if (a, b)EG(M)

and T((a, b)) = (p, q), then Ip- {a, b] =a and Iq- {a, b] =b. T is

easily seen to be a one-to-one transformation, so G(M) is evidently

countable.

Suppose G(M) is countable. Let the elements of G(M) be labeled

(oí, bi), (a2, b2), ■ ■ ■ . Let H denote a collection such that hEH if

and only if (1) there is a positive integer i such that h is the set of all

points of M which precede bit or h is the set of all points of M which

follow o<; or (2) there exist integers i and j such that h = M- [bi, o,-].

H is a countable basis for M, so M is metrizable.

Lemma 2. If M isa separable subset of the ordered space L, then M is

hereditarily separable.

Proof. Suppose H is a subset of M. There is a countable set

Pi, Pi, • • • dense in M such that if PEM, then for some integer

pair (¿, j), PiûPûPj- For each integer pair (¿, j) such that Pi^Pj

and [Pi, Pj] -H exists, let Hy denote a countable subset of [P¿, Pj] -H

such that if PE [P., Pj] -H, then there exists R in Hi} and 5 in Hy

such that R^P^S. "^Hy is easily seen to be a countable set dense

in JET.

Lemma 3. If M is a nonconnected, separable, compact subset of the

ordered space L, then M is metrizable if and only if G(M) is countable.

Lemma 4. If the continuous function fi maps the compact ordered

space Ki onto the Hausdorff space S, then there is a compact ordered

space K2 and a continuous function f2 mapping K2 onto S such that

(1) if K is a closed proper subset of K2, thenf2(K)i¿S, and (2) if x and

y are elements of K2 such that f2(x) =f2(y), there is an element z of K2

between x and y such that f2(z) 9éf2{x).

Proof. Let H denote the set of closed subsets m of K such that

fi{m) = S. Define a partial order % on if by saying nti^m2 if and

only if miQm2. It is easily verified that each chain has a lower bound,

so Zorn's lemma applies here, and H has a minimal element K.
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For each point x of K let Kx denote the union of all the subsets k

of K such that (1) xG&, (2) k is convex relative to K, and (3) if y£k,

then/i(y) =/i(x). Each Kx is closed, and if x and y are elements of K,

then either KX = KV or KX(ZK — KV. Let K2 denote the set of all Kx

for xG-fv, and suppose U is open in K2 if and only if U* is open in K.%

Suppose that K2 is given the natural order induced by the order on

K, and that/2, which maps K2 onto S, is defined by f2(Kx) =/i(x). The

space K2 and the function /2 satisfy the conclusion of the lemma.

Lemma 5. If the continuous function f maps the compact metric space

R onto the Hausdorff space S, then S is metrizable.

Proof for the case where 5 is nondegenerate. Let Ru R2, ■ ■ ■

denote a countable basis for R. Let T denote a collection such that

[/G T if and only if there exists two points Si and s2 of S and a finite

integer sequence jlt j2, ■ • ■ , jn such that /_1(^i) C S^iii f'1^) CR

— ]C-^j",> and U=S—f(R— ^Rj¡)- The collection T is a countable

basis for the compact Hausdorff space S, so 5 is metrizable.

Lemma 6. If the continuous function f maps the compact ordered space

K onto the infinite, compact Hausdorff space S, then there exists a se-

quence x0, Xi, • • • of distinct elements of S such that x\, x2, • • • con-

verges to x0.

Proof. Let yit y%, • • ■ denote a sequence of distinct elements of S,

and for each n, let z„ denote an element of/_1(y„). There is an increas-

ing sequence of integers «i, «2, • ■ • such that z„„ z„„ • • • is mono-

tone, and since K is compact, there is a point z such that the latter

sequence converges to z. There is a subsequence ji, j2, • • • of

»i, w2, • • • such that /(z,-,) ^/(z), ¿=1, 2, • • • . The sequence

Xo, Xi, • • • defined by x0=/(z) and Xj=/(zy¡), *èl> satisfies the con-

clusion of the lemma.

Proof of theorem. Suppose that X is not metrizable. Let u de-

note an element of X, and let g map L continuously onto X X Y. Since

{m} X Y is the continuous image of a compact ordered space, an ap-

plication of Lemma 6 yields an infinite sequence of distinct points

(w, b), (u, bi), (u, b2), • • • , all lying in \u) X Y, such that (u, bi),

(w, b2), • ■ • converges to (u, b). The space Z= {b, bu b2, • • • } with

the relative topology of Y is an infinite compact Hausdorff space, and

the space X XZ is the continuous image of a compact ordered space,

so there exists a compact ordered space K and a continuous function /

mapping K onto XXZ such that the conclusions of Lemma 4 hold.

■ If U is a collection of point sets, then U* denotes the sum of the sets of the col-

lection U.
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For each positive integer n, let Hn denote a partition of XXZ into

the following n +1 open and closed sets : X X {bi ], X X {b2}, • • • ,

Xx{b„}, Xx{b, bn+i, bn+i, ■ • • }. For each n, let Kn denote the set

of all f~*(h) for hEHn, and let /„ denote a partition of K into convex

open and closed sets such that if IEIn, there is an element k of Kn

such that IEk- Since K is compact, each /„ is a finite collection. Let

C denote a point set to which a point P belongs if and only if there

is an integer n and an element I of /„ which intersects/_1(IX {b})

such that P is either the right-most point of this intersection or the

left-most. C is a countable set which will be shown to be dense in

f-Kxx{b}).
Suppose the setf~1(XX {b}) contains an open set U. Let P denote

an arbitrary point of/-1 (XX {b}) and suppose/(P) = (x, b). For each

n let Qn denote an element of f~~l(x, bH). Some subsequence of the Qi's

converges to a point Q in K— U, and the continuity of / implies that

f(Q) = (x> b). Therefore, f(K—U)=XXZ, which is a contradiction.
Now suppose that PEf~l(X X {b} ) and R<P<S. There is a positive

integer n and a point Q of f_1(X X {bn} ) in (R, S). Suppose P < Q < S.

There is an element I of /„ containing P, but not Q, and the right-

most point T of I-f~l(XX {b}) is an element of C satisfying P = T

<S. This case clearly shows why C is dense in/-1 (XX {b}).

The separability of f~x(XX [b]) implies that XX {b\ is separable,

and consequently, that XXZ is separable. Let {Rh R2, • ■ • } denote

a countable set dense in XXZ, and for each n let Pn denote an ele-

ment of f~l(Rn). The set K' = c\(^Pi) is a closed subset of K such

that/CK') =XXZ, so K'-K and X is separable.
It will now be shown that XXZ satisfies the first axiom of counta-

bility.4 Let P denote an arbitrary point of XXZ. Since/_1(P) is com-

pact and K—f~l(P) is separable, it follows by an easy argument that

there is a countable set {Qi, Q2, ■ ■ ■ ] dense in K—f~1(P) such that

if xEf'KP) and yEK-f-l(P), there is a <2¿ such that x<Qi^y or
yûQi<x. For each positive integer n, let Vn denote a collection to

which v belongs if and only if there is a point z of/_1(P) such that v

is the maximal convex subset of K which contains z and does not

intersect ^" Q¡. Since, for each n, V* is an open subset of K con-

taining tKP), it follows that the set Tn = XXZ-f(K-V*) is an
open subset oi XXZ containing P. Suppose Q is an arbitrary point

of XXZ distinct from P, that zEf~1(Q), and also, for example, that

Zi is the last point of f_1(P) which precedes z and z2 is the first point

of/_1(P) which follows z. There exist an integer j\ and an integer j2

4 It also may be shown from [2] that XXZ satisfies the first axiom of countability.



870 L. B. TREYBIG [December

such that Zi<Qy,íSzg<2j2<Z2. The set Vf, where j = max(ji,j2), does

not contain z, so the set Tj does not contain Q. Therefore, T\, T2, ■ • •

is a countable sequence of open sets having only P in common.

The setf~l(XX {&i}) is not metrizable, since that would imply that

X is metrizable. Since Lemma 2 implies that/_1(XX {¿>i}) is separa-

ble, Lemma 3 implies that Gi = G(f~1(Xx{bi))) is uncountable.

There does not exist an uncountable subcollection Ui of Gx such that

if (x, y) G E/i, then /(x) =f(y) ; for if there does, the conditions on /

imply that for (x, y)G i/i, there is a P< such that x<P¿<y, which is

a contradiction. Suppose there is an uncountable subcollection U2 of

Gi and a point x of X such that if (z, w) G Z/a, then /(z) = (x, &i) or

f(w) = (x, bi). There is an uncountable subcollection Uz of U2 such

that if (z, w)G £4 and /(z) = (x, bi), then f(w)9i{x, bi). The fact that

XXZ has a countable basis at (x, ¿>i) implies that there is an open set

U containing (x, &i) and an uncountable subcollection Í/4 of U3 such

that if (z, w)EUi and f(z)EU, then /(w)G(XXZ) - Í7. There is a
point ¿ of K such that each open set containing / contains uncountably

many elements (z, w) of t/4. The continuity of / would imply that

f(t) — (x, bi) and that/(/)G(^XZ) — U, which is a contradiction.

Let C denote the collection of all subsets M of Gi such that if

(p, q) and (p', q') are elements of M then f(p), f(q), f(p'), and f(q')

are four distinct points. C is partially ordered by inclusion, and each

chain has an upper bound, so Zorn's lemma implies the existence of

a maximal element W. Suppose W is countable. Let D denote the set

of all elements {p, q) of Gi such that there is an element (pr, q') of W

such that/(£)=/(£') or f{q'), or f(q)=f(p') or f(q'). D is countable,

so there is an element (p, q) of Gi — D such that/(£) ^/(g). However,

W^+ {(£, 2)} is an element of C containing W, so W is not maximal.

This is a contradiction, so W is uncountable.

It will now be shown that if Xi and x2 are points in X, then there

is a positive integer N such that if n>N, ZiG/-1^!. &„), and

z2G/-1(x2, b„), then there is a point of K between Zi and z2. On the

contrary, suppose there exist points Xi and x2 of X and an increasing

sequence of integers »1, n2, ■ ■ ■ such that for each i there exist points

Zi and Wi of /-1(xi> bn¡) and f~l(x2, bn,), respectively, such that no

point of K lies between z,- and a/,-. There is a point z of K such that

each open set about z contains, for infinitely many integers i, both

Zi and w¿. But the continuity of / would imply that /(z) = (xi, b) and

also that/(z) = (x2, b), which is a contradiction.

Let V denote the set of all ordered pairs (x, y) such that there is

an element (z, w) of W such that/(z) = (x, &i) and f(w) = (y, bi).

There is a positive integer N and an uncountable subcollection V\ of

F such that if (x, y)£V1} zG/-1^. ^n), and wG/-1(y. &jv), then there
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is some point of K between z and w. Let Ti denote a set to which t

belongs if and only if there exist integers i and j such that t is maximal

with respect to the property of being a convex subset of K which

contains neither Pj nor Pj. Let T2 denote a collection to which t be-

longs if and only if / E Ti or / is the union of a finite number of ele-

ments of Pi. The collection T2 is countable and has the property that if

(x, y) E Vi then there exist elements t\ and t2 of T2 such thatf"l(x, bN)

CkCK-f-^y, bN) and tKy, bN)ChCK-f-i(x, bN). This is easily
seen, because for each z in/_1(x, bN), for example, there is an element

tz of Pi which contains z and does not intersect f~x(y, bit), and

f~l(x, bit) is covered by a finite number of the t¡s.

Let Si denote a collection to which an element s belongs if and

only if there is an element t of T2 such that (sX{bN})=XX{bN\

—f(K — t) -(Xx{bif}). Si is a countable collection of open subsets of

X such that if (x, y) E Vu there exist elements Si and s2 of 5X such that

xEsiEX— {y} and yEs2QX— {x}. Since Si is countable and Vi is

uncountable, there is an element 5 of Si and an uncountable subcol-

lection V2 of Vi such that if (x, y)EV2, then xEsQX— [y]. Since

/ is continuous and s X {&i} is open in XXZ, it follows that

f~l(sX {bi\) is open in K.

Let Wi denote the collection of all elements (c, d) of W such that

there is an element (x, y) of V2 such that (f(c);f(d)) = (x, bi, y, bi). If

(c, d)EWi, cEtKsXibi}) and dEK-f'KsX {h}). For each pair
(c, d) of Wi let U(c) denote a convex open subset of K such that

cE U(c) and 17(c) Ef'KsX {h}). The set of all LT(c)'s is uncountable

and no two of them intersect, so K is not separable. This yields a

contradiction, so X is metrizable.

One interesting application of the preceding theorem is the follow-

ing

Theorem. If a space X is the continuous image of a compact ordered

space and can be expressed as an infinite product (H^i), where each

Xi is a nondegenerate compact Hausdorff space, then (1) the product is

a countable product, and (2) each Xt is metrizable.
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