REFERENCES

- 1. C. Berge, The theory of graphs and its applications, Wiley, New York, 1962.
- 2. R. Rado, Axiomatic treatment of rank in infinite sets, Canad. J. Math. 1 (1949), 337-343.

MARATHON OIL COMPANY, LITTLETON, COLORADO

CONCERNING CONTINUOUS IMAGES OF COMPACT ORDERED SPACES

L. B. TREYBIG1

It is the purpose of this paper to prove that if each of X and Y is a compact Hausdorff space containing infinitely many points, and $X \times Y$ is the continuous image of a compact ordered space L, then both X and Y are metrizable. The preceding theorem is a generalization of a theorem [1] by Mardešić and Papić, who assume that X, Y, and L are also connected. Young, in [3], shows that the Cartesian product of a "long" interval and a real interval is not the continuous image of any compact ordered space.

In this paper, the word compact is used in the "finite cover" sense. The phrase "ordered space" means a totally ordered topological space with the order topology. A subset M of a topological space is said to be heriditarily separable provided each subset of M is separable. If a and b are points of an ordered space L and a < b, then [a, b] ((a, b)) will denote the set of all points x of L such that $a \le x \le b$ (a < x < b), provided there is one; also, [a, b] will be used even in the case where a = b. A subset M of an ordered space L is convex provided that if $a \in M$, $b \in M$, and a < b, then $[a, b] \subset M$. If M is a subset of an ordered space L, then G(M) will denote the set of all ordered pairs (a, b) such that (1) $a \in M$, $b \in M$, and a < b, and (2) $\{a, b\} = M \cdot [a, b]$, provided there is one.

Lemma 0. If M is a compact subset of the ordered space L, then the relative topology of L on M is the same as the order topology on M.

Presented to the Society, May 4, 1962; received by the editors January 12, 1963 and, in revised form, July 3, 1963.

¹ The author wishes to express his appreciation to the National Science Foundation for financial support.

² The referee has informed the author that the theorem of this paper was proved independently by A. J. Ward (Cambridge, England).

LEMMA 1. If M is a nondegenerate, totally disconnected, compact subset of an ordered space L, then M is metrizable if and only if G(M) is countable.

PROOF. Suppose M is metrizable. Since a compact Hausdorff space is metric if and only if it satisfies the second axiom of countability, there is a countable sequence I_1, I_2, \cdots such that (1) for each n, I_n is a convex open subset of L, and (2) $I_1 \cdot M$, $I_2 \cdot M$, \cdots is a countable basis for M. There exists a transformation T from G(M) into the ordered pairs of positive integers such that if $(a, b) \in G(M)$ and T((a, b)) = (p, q), then $I_p \cdot \{a, b\} = a$ and $I_q \cdot \{a, b\} = b$. T is easily seen to be a one-to-one transformation, so G(M) is evidently countable.

Suppose G(M) is countable. Let the elements of G(M) be labeled $(a_1, b_1), (a_2, b_2), \cdots$. Let H denote a collection such that $h \in H$ if and only if (1) there is a positive integer i such that h is the set of all points of M which precede b_i , or h is the set of all points of M which follow a_i ; or (2) there exist integers i and j such that $h = M \cdot [b_i, a_j]$. H is a countable basis for M, so M is metrizable.

Lemma 2. If M is a separable subset of the ordered space L, then M is hereditarily separable.

PROOF. Suppose H is a subset of M. There is a countable set P_1, P_2, \cdots dense in M such that if $P \in M$, then for some integer pair $(i, j), P_i \leq P \leq P_j$. For each integer pair (i, j) such that $P_i \leq P_j$ and $[P_i, P_j] \cdot H$ exists, let H_{ij} denote a countable subset of $[P_i, P_j] \cdot H$ such that if $P \in [P_i, P_j] \cdot H$, then there exists R in H_{ij} and S in H_{ij} such that $R \leq P \leq S$. $\sum H_{ij}$ is easily seen to be a countable set dense in H.

Lemma 3. If M is a nonconnected, separable, compact subset of the ordered space L, then M is metrizable if and only if G(M) is countable.

LEMMA 4. If the continuous function f_1 maps the compact ordered space K_1 onto the Hausdorff space S, then there is a compact ordered space K_2 and a continuous function f_2 mapping K_2 onto S such that (1) if K is a closed proper subset of K_2 , then $f_2(K) \neq S$, and (2) if X and Y are elements of X_2 such that $f_2(X) = f_2(Y)$, there is an element Z of X_2 between X and Y such that $f_2(Z) \neq f_2(X)$.

PROOF. Let H denote the set of closed subsets m of K such that $f_1(m) = S$. Define a partial order \leq on H by saying $m_1 \leq m_2$ if and only if $m_1 \subset m_2$. It is easily verified that each chain has a lower bound, so Zorn's lemma applies here, and H has a minimal element K.

For each point x of K let K_x denote the union of all the subsets k of K such that (1) $x \in k$, (2) k is convex relative to K, and (3) if $y \in k$, then $f_1(y) = f_1(x)$. Each K_x is closed, and if x and y are elements of K, then either $K_x = K_y$ or $K_x \subset K - K_y$. Let K_2 denote the set of all K_x for $x \in K$, and suppose U is open in K_2 if and only if U^* is open in K. Suppose that K_2 is given the natural order induced by the order on K, and that f_2 , which maps K_2 onto S, is defined by $f_2(K_x) = f_1(x)$. The space K_2 and the function f_2 satisfy the conclusion of the lemma.

LEMMA 5. If the continuous function f maps the compact metric space R onto the Hausdorff space S, then S is metrizable.

PROOF FOR THE CASE WHERE S IS NONDEGENERATE. Let R_1, R_2, \cdots denote a countable basis for R. Let T denote a collection such that $U \in T$ if and only if there exists two points s_1 and s_2 of S and a finite integer sequence j_1, j_2, \cdots, j_n such that $f^{-1}(s_1) \subset \sum R_{j_i}, f^{-1}(s_2) \subset R$ $-\sum R_{j_i}$, and $U = S - f(R - \sum R_{j_i})$. The collection T is a countable basis for the compact Hausdorff space S_1 so S is metrizable.

LEMMA 6. If the continuous function f maps the compact ordered space K onto the infinite, compact Hausdorff space S, then there exists a sequence x_0, x_1, \cdots of distinct elements of S such that x_1, x_2, \cdots converges to x_0 .

PROOF. Let y_1, y_2, \cdots denote a sequence of distinct elements of S, and for each n, let z_n denote an element of $f^{-1}(y_n)$. There is an increasing sequence of integers n_1, n_2, \cdots such that z_{n_1}, z_{n_2}, \cdots is monotone, and since K is compact, there is a point z such that the latter sequence converges to z. There is a subsequence j_1, j_2, \cdots of n_1, n_2, \cdots such that $f(z_{j_i}) \neq f(z), i=1, 2, \cdots$. The sequence x_0, x_1, \cdots defined by $x_0 = f(z)$ and $x_i = f(z_{j_i}), i \geq 1$, satisfies the conclusion of the lemma.

PROOF OF THEOREM. Suppose that X is not metrizable. Let u denote an element of X, and let g map L continuously onto $X \times Y$. Since $\{u\} \times Y$ is the continuous image of a compact ordered space, an application of Lemma 6 yields an infinite sequence of distinct points $(u, b), (u, b_1), (u, b_2), \cdots$, all lying in $\{u\} \times Y$, such that $(u, b_1), (u, b_2), \cdots$ converges to (u, b). The space $Z = \{b, b_1, b_2, \cdots\}$ with the relative topology of Y is an infinite compact Hausdorff space, and the space $X \times Z$ is the continuous image of a compact ordered space, so there exists a compact ordered space K and a continuous function f mapping K onto $X \times Z$ such that the conclusions of Lemma 4 hold.

^{*} If U is a collection of point sets, then U^* denotes the sum of the sets of the collection U.

For each positive integer n, let H_n denote a partition of $X \times Z$ into the following n+1 open and closed sets: $X \times \{b_1\}$, $X \times \{b_2\}$, \cdots , $X \times \{b_n\}$, $X \times \{b, b_{n+1}, b_{n+2}, \cdots\}$. For each n, let K_n denote the set of all $f^{-1}(h)$ for $h \in H_n$, and let I_n denote a partition of K into convex open and closed sets such that if $I \in I_n$, there is an element k of K_n such that $I \subset k$. Since K is compact, each I_n is a finite collection. Let C denote a point set to which a point P belongs if and only if there is an integer n and an element I of I_n which intersects $f^{-1}(X \times \{b\})$ such that P is either the right-most point of this intersection or the left-most. C is a countable set which will be shown to be dense in $f^{-1}(X \times \{b\})$.

Suppose the set $f^{-1}(X \times \{b\})$ contains an open set U. Let P denote an arbitrary point of $f^{-1}(X \times \{b\})$ and suppose f(P) = (x, b). For each n let Q_n denote an element of $f^{-1}(x, b_n)$. Some subsequence of the Q_i 's converges to a point Q in K - U, and the continuity of f implies that f(Q) = (x, b). Therefore, $f(K - U) = X \times Z$, which is a contradiction. Now suppose that $P \in f^{-1}(X \times \{b\})$ and R < P < S. There is a positive integer n and a point Q of $f^{-1}(X \times \{b\})$ in (R, S). Suppose P < Q < S. There is an element I of I_n containing P, but not Q, and the rightmost point T of $I \cdot f^{-1}(X \times \{b\})$ is an element of C satisfying $P \subseteq T < S$. This case clearly shows why C is dense in $f^{-1}(X \times \{b\})$.

The separability of $f^{-1}(X \times \{b\})$ implies that $X \times \{b\}$ is separable, and consequently, that $X \times Z$ is separable. Let $\{R_1, R_2, \cdots\}$ denote a countable set dense in $X \times Z$, and for each n let P_n denote an element of $f^{-1}(R_n)$. The set $K' = \operatorname{cl}(\sum P_i)$ is a closed subset of K such that $f(K') = X \times Z$, so K' - K and K is separable.

It will now be shown that $X \times Z$ satisfies the first axiom of countability. Let P denote an arbitrary point of $X \times Z$. Since $f^{-1}(P)$ is compact and $K - f^{-1}(P)$ is separable, it follows by an easy argument that there is a countable set $\{Q_1, Q_2, \cdots\}$ dense in $K - f^{-1}(P)$ such that if $x \in f^{-1}(P)$ and $y \in K - f^{-1}(P)$, there is a Q_i such that $x < Q_i \le y$ or $y \le Q_i < x$. For each positive integer n, let V_n denote a collection to which v belongs if and only if there is a point v of v such that v is the maximal convex subset of v which contains v and does not intersect v in v is since, for each v is an open subset of v containing v if follows that the set v is an open subset of v containing v is an open subset of v in v is an open subset of v in v in

⁴ It also may be shown from [2] that $X \times Z$ satisfies the first axiom of countability.

such that $z_1 < Q_{j_1} \le z \le Q_{j_2} < z_2$. The set V_j^* , where $j = \max(j_1, j_2)$, does not contain z, so the set T_j does not contain Q. Therefore, T_1, T_2, \cdots is a countable sequence of open sets having only P in common.

The set $f^{-1}(X \times \{b_1\})$ is not metrizable, since that would imply that X is metrizable. Since Lemma 2 implies that $f^{-1}(X \times \{b_1\})$ is separable, Lemma 3 implies that $G_1 = G(f^{-1}(X \times \{b_1\}))$ is uncountable. There does not exist an uncountable subcollection U_1 of G_1 such that if $(x, y) \in U_1$, then f(x) = f(y); for if there does, the conditions on f imply that for $(x, y) \in U_1$, there is a P_i such that $x < P_i < y$, which is a contradiction. Suppose there is an uncountable subcollection U_2 of G_1 and a point x of X such that if $(z, w) \in U_2$, then $f(z) = (x, b_1)$ or $f(w) = (x, b_1)$. There is an uncountable subcollection U_3 of U_2 such that if $(z, w) \in U_3$ and $f(z) = (x, b_1)$, then $f(w) \neq (x, b_1)$. The fact that $X \times Z$ has a countable basis at (x, b_1) implies that there is an open set U containing (x, b_1) and an uncountable subcollection U_4 of U_8 such that if $(z, w) \in U_4$ and $f(z) \in U$, then $f(w) \in (X \times Z) - U$. There is a point t of K such that each open set containing t contains uncountably many elements (z, w) of U_4 . The continuity of f would imply that $f(t) = (x, b_1)$ and that $f(t) \in (X \times Z) - U$, which is a contradiction.

Let C denote the collection of all subsets M of G_1 such that if (p, q) and (p', q') are elements of M then f(p), f(q), f(p'), and f(q') are four distinct points. C is partially ordered by inclusion, and each chain has an upper bound, so Zorn's lemma implies the existence of a maximal element W. Suppose W is countable. Let D denote the set of all elements (p, q) of G_1 such that there is an element (p', q') of W such that f(p) = f(p') or f(q'), or f(q) = f(p') or f(q'). D is countable, so there is an element (p, q) of $G_1 - D$ such that $f(p) \neq f(q)$. However, $W + \{(p, q)\}$ is an element of C containing W, so W is not maximal. This is a contradiction, so W is uncountable.

It will now be shown that if x_1 and x_2 are points in X, then there is a positive integer N such that if n > N, $z_1 \in f^{-1}(x_1, b_n)$, and $z_2 \in f^{-1}(x_2, b_n)$, then there is a point of K between z_1 and z_2 . On the contrary, suppose there exist points x_1 and x_2 of X and an increasing sequence of integers n_1, n_2, \cdots such that for each i there exist points z_i and w_i of $f^{-1}(x_1, b_{n_i})$ and $f^{-1}(x_2, b_{n_i})$, respectively, such that no point of K lies between z_i and w_i . There is a point z of K such that each open set about z contains, for infinitely many integers i, both z_i and w_i . But the continuity of f would imply that $f(z) = (x_1, b)$ and also that $f(z) = (x_2, b)$, which is a contradiction.

Let V denote the set of all ordered pairs (x, y) such that there is an element (z, w) of W such that $f(z) = (x, b_1)$ and $f(w) = (y, b_1)$. There is a positive integer N and an uncountable subcollection V_1 of V such that if $(x, y) \in V_1$, $z \in f^{-1}(x, b_N)$, and $w \in f^{-1}(y, b_N)$, then there

is some point of K between z and w. Let T_1 denote a set to which t belongs if and only if there exist integers i and j such that t is maximal with respect to the property of being a convex subset of K which contains neither P_i nor P_j . Let T_2 denote a collection to which t belongs if and only if $t \in T_1$ or t is the union of a finite number of elements of T_1 . The collection T_2 is countable and has the property that if $(x, y) \in V_1$ then there exist elements t_1 and t_2 of T_2 such that $f^{-1}(x, b_N) \subset t_1 \subset K - f^{-1}(y, b_N)$ and $f^{-1}(y, b_N) \subset t_2 \subset K - f^{-1}(x, b_N)$. This is easily seen, because for each z in $f^{-1}(x, b_N)$, for example, there is an element t_z of T_1 which contains z and does not intersect $f^{-1}(y, b_N)$, and $f^{-1}(x, b_N)$ is covered by a finite number of the t_z 's.

Let S_1 denote a collection to which an element s belongs if and only if there is an element t of T_2 such that $(s \times \{b_N\}) = X \times \{b_N\}$ $-f(K-t) \cdot (X \times \{b_N\})$. S_1 is a countable collection of open subsets of X such that if $(x, y) \in V_1$, there exist elements s_1 and s_2 of S_1 such that $x \in s_1 \subset X - \{y\}$ and $y \in s_2 \subset X - \{x\}$. Since S_1 is countable and V_1 is uncountable, there is an element s of S_1 and an uncountable subcollection V_2 of V_1 such that if $(x, y) \in V_2$, then $x \in s \subset X - \{y\}$. Since f is continuous and $s \times \{b_1\}$ is open in $X \times Z$, it follows that $f^{-1}(s \times \{b_1\})$ is open in K.

Let W_1 denote the collection of all elements (c, d) of W such that there is an element (x, y) of V_2 such that $(f(c); f(d)) = (x, b_1; y, b_1)$. If $(c, d) \in W_1$, $c \in f^{-1}(s \times \{b_1\})$ and $d \in K - f^{-1}(s \times \{b_1\})$. For each pair (c, d) of W_1 let U(c) denote a convex open subset of K such that $c \in U(c)$ and $U(c) \subset f^{-1}(s \times \{b_1\})$. The set of all U(c)'s is uncountable and no two of them intersect, so K is not separable. This yields a contradiction, so X is metrizable.

One interesting application of the preceding theorem is the following

THEOREM. If a space X is the continuous image of a compact ordered space and can be expressed as an infinite product $(\prod X_i)$, where each X_i is a nondegenerate compact Hausdorff space, then (1) the product is a countable product, and (2) each X_i is metrizable.

REFERENCES

- 1. S. Mardešić and P. Papić, Continuous images of ordered continua, Glasnik Mat.-Fiz. Astronom. 15 (1960), 171-178.
- 2. ——, Diadic bicompacta and continuous mappings of ordered bicompacta, Dokl. Akad. Nauk SSSR 143 (1962), 529-531. (Russian)
- 3. G. S. Young, Representations of Banach spaces, Proc. Amer. Math. Soc. 13 (1962), 667-668.

TULANE UNIVERSITY