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In a recent paper [5] the author has applied the techniques of

topological transformation group theory to the study of certain topo-

logical loops. The purpose of this note is to show more explicitly

the close connection between topological loops and topological trans-

formation groups. It is shown that for every transformation group

G which acts reasonably on a space X so that (a) there is a global

cross-section b from the coset space G/Gp into G for p(E.X, (b) 5(G/GP)

is a strongly transitive collection of homeomorphisms of X, and

(c) Gp is compact, such a space X may be given a binary opera-

tion so that it becomes a topological loop with a left invariant

uniformity. Conversely, it is shown that in certain cases a topological

loop L allows a transformation group G to act reasonably on L with

a cross-section from G/Gi for the identity 1 of L satisfying (a) and (b)

above. In certain cases (c) will also be satisfied.

The reader may consult K. H. Hofmann [3] for the appropriate

terminology in topological loops, with the following exceptions. A

topological loop L has a left invariant uniformity (see [S]) when there

is a uniform structure 11 on L compatible with its topology so that "U

has a base (B of entourages satisfying (x, y)(EB if and only if (ax, ay)

GP for all PG® and a(E.L. An invariant uniformity is a left invari-

ant uniformity which also satisfies a right invariant condition. If a

and b are elements of a loop, the unique solutions x and y to the equa-

tions ax = b and ya = b will be designated in this note by a(-1)Z> and

¿><x(-1), respectively. The parentheses embracing —1 are used as a

reminder that a(_1)ô is not in general the product of "a-1" and b as

in a group. (This is at least the third notation appearing in print

for these solutions. At the present this seems to be the most satis-

factory.)

The reference for transformation group topics is Montgomery and

Zippin [7]. If G is a transformation group acting on a space X, and

if Gp is the isotropy or stability group at p£X, then there is a

canonical mapping w: G/GP-*X defined by ir(gGP)=g(p). Whenever

t is a homeomorphism, G is said to act reasonably on X (see [8]). The

canonical mapping it is continuous, onto, and one-one when G acts

effectively and transitively [7, p. 43], but not in general open. A

cross-section from G/Gp into G is a continuous mapping 5 of the coset
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space into G, with ô(GP) equal to the identity e of G, such that

<j>8: G/GP-^>G/GP is the identity mapping for <p the natural projection

of G onto G/Gp. If G acts reasonably on X, it is easily seen that

h(G/Gp) is a transitive collection of homeomorphisms of X, and

furthermore for g and h in h(G/Gp), gj^h if and only if g(p) ¿¿h(p). If

the stronger condition holds that g^hli and only if g(x)^h(x) for

all xEX (and all g, hE$(G/Gp)), then 8(G/GP) is said to be strongly

transitive on X. Strong transitivity is equivalent to saying that

6(G/GP) is uniquely transitive on X, that is, for x and y in X there is

one and only one g in 8(G/GP) such that g(x) =y.

Theorem 1. Let G be a topological transformtion group acting rea-

sonably on a space X so that (a) there exists a (full) cross-section

ô: G/Gp-^G, (b) b(G/Gp) is a strongly transitive collection of homeo-

morphisms of X, and (c) Gp is compact. Then X can be given a binary

operation so that it becomes a topological loop with a left invariant uni-

formity.

Proof. Let/ denote the evaluation mapping from GXX into X,

and let -w denote the canonical mapping from G/Gp onto X. Recall

that/ is continuous and it is a horneomorphism. The natural mapping

<j> from G onto G/GP is continuous and open.

Define the binary operation on X by the following composition

of functions:

ir-1 X id                     Ô X id /
(1) XXX—->G/GPXX->GXX^X,

where id is the identity mapping of x; that is, for given x and y in

X, there exists a unique gES(G/GP) such that fl"(<£(g)) =g(p) —x, so

that the product xy is by definition g(y).

It is easily seen that p is the identity of X, because px = b(Gp)(x)

= e(x) =x, and xp = g(p), where g = Sw~1(x). But g(p) =ic<j)b'Tr~1(x) =x.

Also solutions to equations exist and are unique: If x and y are in

X, we wish to find unique a and b so that xa = y and bx = y. There

exists gEà(G/Gp) such that g(x)=y, and only one such g by the

strong transitivity condition. Then b = rô~1(g) is the unique solution

desired. Likewise, because 5ir~1(x) =g' is a homeomorphism of X onto

itself, there exists one and only one a£X such that g'(a) =y. Then

it follows that xa — y.

Thus X is an algebraic loop. We have not yet used the fact that

ô is continuous. However when ¿> is continuous, then diagram (1)

shows that multiplication is the composition of continuous functions

and hence continuous.
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We next show that (x, y)—>x(-1)y is continuous. We have the fol-

lowing:

ir"1 X id                   5 X id             / X id /
XXX-► G/Gp X X-> G X X-> GXX -^-» X,

where I:G^>G is defined by 1(g) =g~1. The composition of these

functions is continuous and maps (x, y) onto g~1(y), where g = Sir"1 (x).

But g_1(y) = x(_1)y, because xg~l(y) =g(g~1(y)) =y.

Next it is shown that (x, y)—»yx(-1) is continuous. It is in this sec-

tion of the proof that compactness of Gp is used. We will first prove

the following lemma:

Lemma. Let S be a subset of a topological group G, and let f: S^>G

be a one-one, continuous mapping. If f is bounded, i.e., the closure of

{/(x)_1x: xGS1} is compact, then f is a homeomorphism from Stof(S).

Proof. It is sufficient to show that, if {x,} is a net in S such that

limpf(xp) =aG/(5), then any subnet {xq} of the net {xp} has a fur-

ther subnet converging to/-1(a)- There is a subnet {xr} of {xq\ such

that c = limr/(xr)_1xr exists; thus limr xr exists and is equal to ac by

continuity of multiplication. Furthermore, f~l(a) =f~1(\imrf(xr))

=/_1 (/(limr xr)) =ac. Thus {xr} is the desired subnet of {xg} con-

verging to /-1(a). Returning to the proof of the theorem, define the

following space and functions : G X G is the product topological group

obtained from G with coordinate-wise multiplication, aXv.LXL

-^GXG is defined by aXa(x, y) = (<r(x), 7r(y)), ju: XxX^XxXisde-

fined by p(x, y)=Xxy, y), m*: GXG-^GxG is defined by m*(g, h)
— (g^i h), and y : X X X—>G X G is the composite function <j X <r followed

by m*. It is easily verified that crXcr and m* are homeomorphisms,

and p is one-one and continuous. The following diagram illustrates

the situation:

<r X &                m*
X X X->GX G->GX G

mí
<T X  (T

XX X->GX G.

There is a unique function z: y(XXX)—>GXG so that the diagram is

commutative. Routine calculation shows that, for v£y(LXL) = S,

z(v)~lv belongs to (Gp, e), which is a compact subset of GXG. The

above lemma implies that z is a homeomorphism, making ju a homeo-

morphism. Openness of p implies continuity of (x, y)—>yx(-1).

Finally, compactness of Gp implies that the coset space G/Gp has

a uniformity invariant under the action of G [4], that is, X has a left
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invariant uniformity because the elements of 8(G/GP) are the left

translates.

It is remarked that the author tried at one time (unsuccessfully)

to show that (x, y)—>yx{~l) was continuous without assuming com-

pactness of Gp, but assuming local compactness of X. With the

stronger assumptions of either compactness for X or a Euclidean

neighborhood in X, it can be shown that this inverse function is con-

tinuous.

Partial converses to Theorem 1 are now given.

Theorem 2. Let M be a topological loop. In the following cases there

exists a topological transformation group G acting reasonably on M with

respect to Gi for the identity 1 of M, and there is a cross-section 5 : G/Gi

—>G so that 8(G/Gi) is strongly transitive on M:

Case 1. M is locally compact.

Case 2. M has an invariant uniformity.

Proof of Case 1. For each xEM, let Lx denote the homeomor-

phism of M onto itself mapping y onto xy. Let G be the group gener-

ated by {Lx: xEM] in the group of all homeomorphisms of M onto

itself. Let G have the g-topology [l]. In [5] G is called the group

generated by the left translates of M, and it is pointed out that G is

a topological group of homeomorphisms with the g-topology acting

effectively and transitively on M. From the proof of Theorem 4 of

[5] it may be inferred that the mapping Cl'- M—>G defined by

Cl(x) = Lx is a continuous function. Let <j>: G—^G/Gi and 7r: G/Gi—>M

be the natural and canonical mappings (as in Theorem 1 above).

Then ir<¡> restricted to Cl(M) equals Cf1, and -k~x—<¡>Cl. Thus C¿

is a homeomorphism and 7r is open. It is known that t is continuous,

one-one, and onto. Hence G acts reasonably. Also Clt is a homeo-

morphism of G/Gi into G and is easily seen to be a cross-section. Fi-

nally, strong transitivity is equivalent to the condition that La(x)

= Li(x) if and only if a = b, a condition always satisfied in a loop.

Proof of Case 2. Let G again denote the group generated alge-

braically by the left translates of M, but let G have the topology of

uniform convergence [6, p. 226]. Because of the invariant uniformity

condition, each left translate and its inverse, and consequently each

element of G is a uniformly continuous mapping with respect to the

invariant uniformity. Hence G is a topological transformation group

[2] of homeomorphisms acting effectively and transitively on M.

Now we will show the mapping Cl is continuous. Let B be an entou-

rage in the uniformity for G of the form B = {(/, g) :f and gEG and

(f(x), g(%))EB' for all xEM), where B' is an entourage which is



876 S. N. HUDSON [December

invariant. If (y, z)£B', then (Cx(y), Cl(z))E.B, because (yx, zx)

= (Lv(x), L,(x)), and because (yx, zx)£B' if and only if (y, z)(EB'.

Since entourages of the type of P form a base for the uniformity on

G, Cl is uniformly continuous. As in Case 1, it follows that Cl is a

homeomorphism, w is a homeomorphism, Cl7t is a cross-section of

G/Gi into G, and G acts reasonably. Again C¿7r(G/Gi) is a strongly

transitive collection of homeomorphisms of X.

In general neither G as defined above (G with the g-topology or G

with the topology of uniform convergence) is locally compact; how-

ever, it is sometimes convenient to have a locally compact group con-

taining the translates and acting on M. In Case 1 above the closure

G* of G in the space of all continuous functions from M to M with the

g-topology is the desired group when it is further assumed that M

is connected and has a left invariant uniformity. The situation is more

completely described in the next theorem.

Theorem 3. Let M be a locally compact, connected loop. Let G be the

group generated by the left translates, let G* be the closure of G in the space

of all continuous functions from M to M, and letG* = {gOUG*: g(l) = l},

all with the g-topology. Then the following are equivalent :

(a) G* is compact,

(b) G* is compact and G* is a transformation group of M,

(c) M has a left invariant uniformity,

(à) G is a uniformly equicontinuous collection of homeomorphisms,

(e)  G* is a locally compact transformation group of M and G* is

compact.

When, for example, (b) holds, then G* acts reasonably on M, there

is a natural cross-section from G*/G* into G*, and the strong transi-

tivity condition is satisfied with respect to this cross-section.

Proof. It is known that G* is a topological semigroup. We first

show that Gi is dense in G*. It is easily seen that each element g' of

G can be represented uniquely as g' = Lxh, where ÄGGi and x is some

element of M. Let g£G*. There exists a net {gt} with each gt in G

so that {gt} converges to g. Let LXtht be the representation for g(,

where ÄiGGi. Then {x¡} converges to g(l) = 1. Hence {ht\ converges

to some h<E.G* and {LX(} converges to Li. Thus {LXtht} converges to

L\h and \ht\ converges to h = g, implying that Gi is dense in G*.

In the argument just concluded the fact that G = AG\, where

A = {Lx: x£M\, was used. It is also easily shown that G* = AG*.

We will show that each condition in the statement of the theorem

implies the following one. Note that (e) trivially implies (a). If G*
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is compact, then G* is a compact topological semigroup with the

dense subgroup &. It follows that G* is a topological group [9], and,

consequently, that G* is also a topological group in the g-topology

and (b) is satisfied. It then follows that the coset space G*/G* has a

uniformity invariant under the action of G* [4c]. But G*/G* may be

identified topologically with M (when condition (b) is satisfied, one

may construct, as in Theorem 2, the cross-section from the coset

space G*/G* into G*). Hence M has a left invariant uniformity. This

means that G is a uniformly equicontinuous collection of homeo-

morphisms with respect to this uniformity (see the proof of Theorem

1 in [5]). However if G is a uniformly equicontinuous collection,

then Arens' Theorem in [l] shows that G* is a locally compact trans-

formation group of M; and a modification of Dieudonné's Proposition

12 in [2] shows that G* is compact. This concludes the proof.

We remark that in the situation of Theorem 3 both G and G* are

connected, as shown by Theorem 2 of [5].

The author is grateful to K. H. Hofmann for his suggestions, par-

ticularly in connection with Theorem 1 and its lemma.
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