A NOTE ON COMPACT SEMIRINGS

JOHN SELDEN

By a topological semiring we mean a Hausdorff space S together with two continuous associative operations on S such that one (called multiplication) distributes across the other (called addition). That is, we insist that x(y+z) = xy + xz and (x+y)z = xz + yz for all x, y, and z in S. Note that, in contrast to the purely algebraic situation, we do not postulate the existence of an additive identity which is a multiplicative zero.

In this note we point out a rather weak multiplicative condition under which each additive subgroup of a compact semiring is totally disconnected. We also give several corollaries and examples.

Following the notation current in topological semigroups we let H[+](e) represent the maximal additive subgroup containing an additive idempotent e. Similarly $H[\cdot](f)$ will denote the maximal multiplicative group of a multiplicative idempotent f. The minimal closed additive or multiplicative semigroup containing x is denoted by $\Gamma[+](x)$ or $\Gamma[\cdot](x)$ respectively. By E[+] or $E[\cdot]$ we mean the collection of additive or multiplicative idempotents. Finally A^* represents the topological closure of A. For references on the properties of these sets the reader may see [1].

THEOREM. If S is a compact semiring such that $E[\cdot]S \cup SE[\cdot] = S$ then each additive subgroup of S is totally disconnected.

PROOF. Let S be a compact semiring such that $E[\cdot]S \cup SE[\cdot] = S$ and let G be an additive subgroup with identity e. Suppose G is not totally disconnected. Then neither is H[+](e) since $G \subset H[+](e)$. That is, C, the component of e in H[+](e), is nontrivial. Now C is a compact connected nontrivial group. It is well known [2, pp. 175, 190, and 192] that C must contain a nontrivial additive one parameter group T. Pick t different from e in T. Recall that $t \in fS$ or Sf for some f in $E[\cdot]$. Suppose $t \in fS$. Clearly fS is a compact subsemiring for which f is a multiplicative left identity. Thus ft = t so fT is nontrivial and of course, fT is connected. Therefore fS contains a connected nontrivial group. Similarly if $t \in Sf$ then Sf is a compact subsemiring with right identity containing a connected nontrivial subgroup. Thus, without loss of generality, we may assume S has a left or a right identity 1.

Suppose 1 is a left identity. We identify each positive integer n with

Received by the editors April 1, 1963.

the *n*-fold sum of 1. Thus, if $x \in S$, we may regard nx as a product as well as a sum in S. Now, for each positive integer n, we have nT = T so $(nT)^* = T^*$. This and the compactness of S gives us $nT^* = T^*$. From a theorem of A. D. Wallace [3], we see that $xT^* = T^*$ for each x in $\Gamma[+](1)$. But, $\Gamma[+](1)$ contains an additive idempotent g. Thus $gT^* = T^*$. On the other hand the additive idempotents E[+] form a multiplicative ideal, so $T^* \subset E[+]$. Thus the additive group T must consist of a single element. This is a contradiction. Since a similar argument applies in case S contains a right identity, the theorem is proved.

By a clan we mean a compact connected semigroup with identity. Furthermore, we say a space S is acyclic provided $H^n(S) = 0$ for each positive integer n where $H^n(S)$ represents the nth Čech cohomology group of S.

COROLLARY 1. If S is a compact semiring such that $E[\cdot]S \cup SE[\cdot] = S$ then every additive subclan is acyclic.

PROOF. Let T be an additive subclan of S. Let e be an additive idempotent of the minimal additive ideal of T. Then it is known that e+T+e is a group and $H^n(T)=H^n(e+T+e)$ for each positive integer n [4]. Now, by the theorem, e+T+e is totally disconnected. But e+T+e, being a continuous image of T, is connected. Thus e+T+e is a single point and $H^n(T)=0$ for n>0.

A semigroup S is said to be normal if Sx = xS for each x in S.

COROLLARY 2. Let S be a compact semiring such that $SE[\cdot] \cup E[\cdot]S$ = S. Let T be an additive subsemigroup of S.

- (i) If T is a continuum then the minimal ideal of T is idempotent.
- (ii) If also T is normal and $(E[+] \cap T) + T = T$ then each closed ideal of T is acyclic.
 - (iii) If also T is metric then T is arcwise connected.
- (iv) If also T = S then there is an element k in S such that $k+S = S + k = k = k^2$.

PROOF. Let S be a compact semiring such that $SE[\cdot] \cup E[\cdot]S = S$ and T be an additive semigroup of S. Suppose T is a continuum. It is well known [5] that the minimal ideal of T is the union of groups each of which is of the form e+T+e where $e \in E[+] \cap T$. Now e+T+e, being a continuous image of T, is a continuum. But each additive subgroup of S must be totally disconnected. Consequently, e+T+e is a single point and we have shown that the minimal ideal of T consists entirely of idempotents.

Suppose also that T is normal and $(E[+] \cap T) + T = T$. The nor-

mality of T implies that its minimal ideal is a group. Since the minimal ideal of T is also idempotent it must be a single point, say k. Now Corollary 3 of [6] gives us that each closed ideal of T is acyclic and part (ii) is proved.

Assume in addition that T is metric and select an additive idempotent f of T. Clearly f+T is a compact connected additive subsemigroup of T. Furthermore $k \in f+T$ and, because f+T=T+f, f is an additive identity for f+T. Pick x in f+T. We have x+(f+T)=(x+f)+T=x+T=T+x=T+(f+x)=(T+f)+x=(f+T)+x. Thus f+T is additively normal. Also, by the theorem, each additive subgroup of f+T is totally disconnected. Now R. P. Hunter has shown that each such semigroup contains an arc (indeed, an I-semigroup) from the zero to the identity [7, Theorem 1]. Since f+T is metric it is arcwise connected. But $T=\bigcup\{f+T|f\in E[+]\cap T\}$ and $k\in f+T$ for each f in $E[+]\cap T$. Therefore T is arcwise connected.

Suppose T = S so that S + k = k + S = k. Now k is in either $E[\cdot]S$ or $SE[\cdot]$. In the former case there is a g in $E[\cdot]$ such that gk = k. But because k is an additive zero we have k = g + k and $k = k + k^2$. Thus $k = k + k^2 = (g + k)k = k^2$. In case $k \in SE[\cdot]$ a similar argument gives us that $k = k^2$ and the corollary is proved.

Recall that if the minimal ideal K of a compact semigroup S is idempotent then its structure is completely known [8]. That is, K must be of the form $A \times B$ where multiplication is defined by $(a, b) \cdot (a', b') = (a, b')$ for any a and a' in A and b and b' in B.

If S is a semiring, let H[+] denote the union of all the additive subgroups of S.

COROLLARY 3. Let S be an additively commutative semiring such that $SE[\cdot] \cup E[\cdot]S = S$. If S is a metric continuum and $e \in E[+]$ then E[+], E[+]+S, e+S, H[+] and e+H[+] are arcwise connected.

PROOF. Clearly E[+] is a closed additive subsemigroup and a multiplicative ideal. Now, since S is connected and $SE[\cdot] \cup E[\cdot]S = S$, the multiplicative ideals of S are connected and E[+] is a continuum. From this it follows that E[+]+S is also a continuum. Furthermore, e+S being a continuous image of S, is a continuum. Applying the third part of Corollary 2, we have that E[+], E[+]+S, and e+S are arcwise connected. Now suppose $x \in S$ and G is an additive subgroup of S. It follows from the distributive property that xG and Gx are additive subgroups of S. Thus $xH[+] \cup H[+]x \subset H[+]$. That is, H[+] is a multiplicative ideal of S. It is well known [1] that H[+] is a closed additive subsemigroup of S. Thus Corollary 2 gives us that H[+] is arcwise connected.

Notice that for E[+] to be a continuum it is only necessary that S be a continuum and $E[\cdot]S \cup SE[\cdot] = S$. In case E[+] is a single point k we have k+S=S+k=kS=Sk=k. To see this, recall that E[+] is a multiplicative ideal and hence must contain the minimal such. On the other hand, the minimal additive ideal of S consists of idempotents and therefore must be k.

A semigroup is said to be *simple* if it contains no proper ideals.

COROLLARY 4. If S is a compact connected additively simple semiring then each multiplicative idempotent of S is an additive idempotent of S.

PROOF. Let e be a multiplicative idempotent of S. Then eS is a compact connected subsemiring for which e is a multiplicative left identity. Now eS is additively simple since it is additively a homomorphic image of S. Thus the first part of Corollary 2 gives us that eS is additively idempotent. But $e \in eS$ so e is an additive idempotent and the corollary is proved.

EXAMPLE. Let A be the field of integers mod 3 with the discrete topology and B be the interval [0, 1]. For x and y in B, define $x+y=xy=\min\{x,y\}$. Note that B is a semiring so that $A\times B$ becomes a semiring under coordinate-wise addition and multiplication. Define the equivalence relation α on $A\times B$ by: $(a,j)\alpha(a',j')$ if (1) a=a' and j=j' or (2) j=j'=0. Clearly α is a closed congruence. Thus $(A\times B)/\alpha$ is a compact connected semiring with multiplicative identity. The maximal additive subgroups of $(A\times B)/\alpha$ are of the form $(A\times \{b\})/\alpha$ and of course totally disconnected.

On the other hand let C be the circle group written additively and given the multiplication xy=0 for all x and y in C. According to the theorem, C can not be imbedded in a compact semiring with multiplicative identity (even if the identity is isolated).

QUESTION. Regarding the proof of the third part of Corollary 2, it is easily seen that e+T is not only arcwise connected but also contractable. Indeed $(e+T) \cup (f+T)$ is contractable for e and f in $E[+] \cap T$. The referee has pointed this out and raised the question: Is T contractable?

REFERENCES

- 1. A. D. Wallace, The structure of topological semigroups, Bull. Amer. Math. Soc. 61 (1955), 95-112.
- 2. D. Montgomery and L. Zippin, *Topological transformation groups*, Tracts in Mathematics 1, Interscience, New York, 1955.
- 3. A. D. Wallace, Inverses in Euclidean mobs, Math. J. Okayama Univ. 3 (1953), 1-3.
- 4. ——, Cohomology, dimension, and mobs, Summa Brasil. Math. 3 (1953), 43-54.

- 5. ——, A note on mobs. II, An. Acad. Brasil. Ci. 25 (1953), 335-336.
- 6. H. Cohen and R. J. Koch, Analytic semigroups and multiplications on 2-manifolds, Trans. Amer. Math. Soc. (to appear).
- 7. R. P. Hunter, Certain upper semi-continuous decompositions of a semigroup, Duke Math. J. 27 (1960), 283-289.
- 8. A. D. Wallace, The Rees-Suschkewitsch structure theorem for compact simple semigroups, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 430-432.

University of Georgia

ON SOME GEOMETRIC INEQUALITIES

G. D. CHAKERIAN¹

1. Let C be a closed curve of class C^2 in Euclidean n-space E_n . We write the equation of C as x = x(s), $0 \le s \le L(C)$, where s denotes arc length and L(C) is the length of C. Denoting differentiation with respect to s by a dot, we define the total curvature of C as

(1)
$$K(C) = \int_C |\ddot{\mathbf{x}}| ds.$$

It is proved in [1] that if C is constrained to lie in a ball of radius r, then

$$(2) L(C) \leq rK(C).$$

This result is a slight sharpening of an inequality of I. Fáry [2]. The proof given in [1] depends on an integralgeometric lemma for the 2-dimensional case, together with a reduction of the n-dimensional to the 2-dimensional case by developing the curve into a plane. The proof yields no information about curves for which equality occurs in (2).

In §2 we give a simple, direct proof of (2) and characterize those curves for which equality holds. We also obtain a sharpening of an inequality of Rešetnjak [3]. A generalization to surfaces is considered in §3.

Received by the editors July 10, 1963.

¹ This research was partially supported by National Science Foundation Grant G-24943.