
ON A CLASS OF EXPONENTIAL EQUATIONS1

HOWARD RUMSEY, JR. AND EDWARD C. POSNER

We shall prove the following theorem.

Theorem. Let a be either 2 or an odd integer. Let qi, • ■ • , q¡;

Ti, ■ • • , rk be distinct primes, which are relatively prime to a. Then the

exponential equation

. . x        Vi v¡        n 'k
(1) a   = qi  ■ • ■ qj  + ri ■ ■ • rk

has only a finite number of solutions in non-negative integers x; y%, • • • ,

y i ; Zi, ■ ■ • , zk. Furthermore, all such solutions may be found in a finite

number of steps.

The fact that equation (1) has only a finite number of solutions is

immediate from the following more general result which is proved in

Gelfond's book [3, p. 37].

Lemma 1. Suppose the numbers £i, • • • , £m; fa, • ■ • , fa; r/i, • • • ,vp

are integers in some algebraic number field K, none of which is an alge-

braic unit, and suppose A, B, C iABC^O) are numbers in K, and that

the numbers

?i • • • £»;fa • • • fa;>zi • • • vp

are mutually relatively prime. Then the equation

A& ••.£•+ Ufa*1 • • • rC + Oh ■ • • v7 = 0

has only a finite number of solutions in non-negative integers xit • • ■ , x„ ;

yi, • ' • i ym; 2i, • • • , zp.

Thus the new result is that equation (1) can be solved constructively

(in a finite number of steps). But our proof is based on an entirely

new method. For earlier work on the constructive solvability of ex-

ponential equations similar to (1), we refer to the partial list at the

end of this paper.

To simplify the notation of the proof we set

B = 9.1 • ■ • Ci ,        C = ri • ■ ■ rk .

Equation (1) implies
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a2x = (B + C)2 = (B - C)2 + ABC.

Factoring the right-hand side in the field R(\/( — BC))-we have

(2) a2* = (B - C + 2y/(-BC))(B - C - 2y/(-BC)).

It should be noted that the field R(y/( — BC)) depends only on the

(k+j)-t\xp\e of parities of y\, • • • , y¡, Zi, ■ ■ ■ , Zk. Therefore we shall

be considering only a finite number 2k+i of fields. We also have to

consider the two cases: a = 2 and a = pial ■ ■ ■ piai where pi, •■ -, Pi

are odd primes and c^, • • • , a¿ are positive integers. We consider the

latter case first. By treating equation (2) as an equation in ideals

over R(s/( — BC)) and using unique ideal factorization it is easy to

show that equation (2) implies

(3) (?T1X • ■ • <??iX =(B-C + 2V(-BC)),

where (Pm (m= 1, • • • , i) are prime ideals in R(y/( — BC)) such that

<?m(?m=(pm) (m = \, • ■ • , i),2 and (B-C+2y/(-BC)) is the ideal

generated by B-C+2y/(-BC).

Equation (3) can hold only if the left-hand side is a principal ideal.

Thus the possible values of x are integer multiples of the order of

the element (P = (P1ai • • • <P?a< in the class group of R(y/(-BQ). If

we set h = order S>, x = hr, and (Ph = (H) where HER(V(-BC)),

equation (3) implies

(4) uHr = B - C+ 2V(-BC),

where m is a unit in R(\/( — BC)).

Thus when a is an odd integer we have shown that equation (1)

implies an equation of the form

(5) uHr - uH' = W(-BC),

where H is one of a finite number of integers in R(\/( — BC)), H is

relatively prime to B C, H is not a unit, and u is a unit in R(\/( — BC)).

In the case a = 2 an analogous derivation shows that the same condi-

tions must hold except that equation (5) is replaced by

(6) uHr - uHr = V(-BC).

To complete the proof of our theorem we need the following lemma.

Lemma 2. Let D be a positive integer. Let H be an algebraic integer

in R(\/( — D)) not a unit. Let P= (pi, • • ■ , pm) be a fixed set of rational

primes all relatively prime to H. Let u be any unit in R(\/( — D)). Then

1 (P„ is the ideal conjugate to (P„ and (pm) is the ideal generated by p,
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there exist effectively computable constants Xi, • ■ ■ , Xm such that

Xi^Xi ii = l, 2, ■ ■ ■ , m) implies that the equation

(7) uHr - uff = p? ■ ■ ■ p^Vi-D)

has no solutions in non-negative integers r ; xh • • ■ , xm.

This lemma actually suffices to prove the theorem. We have only

to apply it to equations (5) and (6) to obtain upper bounds on the

exponents yi, • • • , y3; Zi, ■ ■ • , zk in equation (1).

We must consider three cases in the proof of the lemma. The first

is when u= ±1. In this case equation (7) becomes

(8) Hr-Hr= ±pT- ■ -pïV(-D).

Let p be a prime in P and let x be the corresponding exponent. Equa-

tion (8) implies

(9) IP = Hr (mod px).

Denote by r(x) the smallest positive exponent r such that congruence

(9) holds. Since H and p are relatively prime, r(x) is well defined and

the values of r which satisfy congruence (9) are integer multiples of

r(x). To obtain the upper bound for x which is called for in the lemma

we choose X so large that there exists a prime çÇjEP and relatively

prime to D such that

(10) 7/r<x> = HT{X) (mod q).

The existence of such a g is guaranteed by Lemma 1 (we assume H

and TÏ are relatively prime, otherwise the lemma is trivial). Such an

X and q may be found constructively by considering the linear recurring

sequence

Ar = iH'- #0/(27 - 77),

and finding the first r(A) such that Ar(X) is divisible by some such q.3

If x^Xand

Hr = H" (mod px),

then, as we remarked above, r is divisible by r(x). Therefore, from

(10), we also have

HT = 77r (mod q).

' In practice, this search can be further simplified, but since this simplification is

not necessary for the validity of the theorem, we shall not discuss it here.
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In other words if x^X, px divides Hr—Hr only if q divides HT — H~r.

Thus there are no solutions to equation (8) for x*tX; since p was an

arbitrary prime in P, the lemma is proved if u= ±1.

The second case we consider is D=\ and u= +^/( — \). In this

case equation (7) becomes

h + if = ± pT • • • px:.

As before, we let p be a prime in P, let x ^ 2 be an integer, and define

r(x) to be the smallest positive integer r such that

(11) Hr = - Hr (raoàp*).

In this case it is easy to show that the only integers r which satisfy

congruence (11) are odd multiples of r(x). By Lemma 1 we may select

X so large that

ffr(X) = _ #r(x) (mod ?)

for some g£P. Now the proof of the lemma proceeds exactly as be-

fore.

The last case we must consider is D = 3 and u— ±w or +w2 where

w = (1 + t/( — 3))/2. Let u be fixed, let p be a prime in P and let x be

the corresponding exponent in equation (7). First we shall determine

those integers 5 for which

(12) uHs = uR> (mod¿>*).

Denote by h(x) the smallest positive integer h such that

Hh = Hh (mod px),

and by r(x) the smallest positive integer 5 such that congruence (12)

holds. Let r = r(x) and let 5 be any integer for which (12) holds. Then,

since p is relatively prime to H, we have

flt-r m Jf.-r rm0¿ px)

It follows that h(x) divides s — r(x). Thus px divides uH' — uR* only if

(13) s = r(x) + nh(x)

for some integer n. Now we observe that h = h(x) divides 3r = 3r(x).

This follows from the congruence

H3r s ± (uHr)3 = + (üH'Y m H** (mod p*).

On the other hand, by the definition of h(x) we clearly have r(x)

<h(x). It follows that either h = 3r or h = 3r/2. We may replace

equation (13) by
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(r(x)(3n + 1),       r(x) odd,
(14) s =  <

l(r(x)/2)(3« + 2),        r(x) even.

That is, pz divides uH' — üH' only if equation (14) holds for some

integer ».

We can constructively select an integer X and a prime g 7*3;

pu • ■ • , pm such that one of the two following cases is true :

r = r(x) is odd and uHr = uHr (mod q) or

r = r(x) is even and u2Hrl2 = ü2Hrl2 (mod g).

If there were no such x and g, equation (7) (or one like it) would hold

for arbitrarily large values of the exponent x of p. But this contradicts

Lemma 1.

We complete the proof by observing that if r = r(x), x'ïtX, and

uH' = uH' (mod px), then either

uH> s ± (wi7r)3B+1 = ± (m7703"+1 s «77« (mod q)

or

M#'  B   ±   (M2#r/2)3n+2  =   ±   (ö2^r/2)3n+2  =  ßtf.   (mod ?)

as required.
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