ON A CLASS OF EXPONENTIAL EQUATIONS!
HOWARD RUMSEY, JR. AND EDWARD C. POSNER
We shall prove the following theorem.

THEOREM. Let a be either 2 or an odd integer. Let qi, - - -, gj;
ry, © + +, rx be distinct primes, which are relatively prime to a. Then the
exponential equation

(1) az = q‘{l .« . e q:’ + rzll « e e r;k
has only a finite number of solutions in non-negative integers x; y1, * * - ,
Yii 21, * * +, 2. Furthermore, all such solutions may be found in a finite

number of steps.

The fact that equation (1) has only a finite number of solutions is
immediate from the following more general result which is proved in
Gelfond’s book [3, p. 37].

LeEMMA 1. Suppose the numbers &y, » -+, Emi¥s, * * s ¥ni M, * * * 5 Mp
are integers in some algebraic number field K, none of which is an alge-
braic unit, and suppose A, B, C (ABC0) are numbers in K, and that
the numbers

El. . .Em;‘ljl. . "/’n;"ll' c e
are mutually relatively prime. Then the equation
AE - BT B g O ,7;”=0

has only a finite number of solutions in non-negative integers Xy, * * * , Xn}
Yot Ymisn

Thus the new result is that equation (1) can be solved constructively
(in a finite number of steps). But our proof is based on an entirely
new method. For earlier work on the constructive solvability of ex-
ponential equations similar to (1), we refer to the partial list at the
end of this paper.

To simplify the notation of the proof we set

B=gq'-q/, C=r" -r"
Equation (1) implies
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1 This paper presents the results of one phase of research carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under Contract No.
NAS 7-100, sponsored by the National Aeronautics and Space Administration.
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a¥* = (B+ C)?= (B — C)*+ 4BC.
Factoring the right-hand side in the field R(v/(—BC))we have
2) e* = (B — C+ 2v/(—BC))(B — C — 2+/(—BC()).

It should be noted that the field R(+/(—BC)) depends only on the
(k+j)-tuple of parities of y1, + - -, ¥;, 21, * + -, 2. Therefore we shall
be considering only a finite number 2*+7 of fields. We also have to
consider the two cases: a=2and a=p* - - - p* where py, - - -, p:
are odd primes and a4, - -, a; are positive integers. We consider the
latter case first. By treating equation (2) as an equation in ideals
over R(+/(—B()) and using unique ideal factorization it is easy to
show that equation (2) implies

2ayz 2057

(3) ¢ ---®; = (B-C+ 2v(—B(0)),
where @ (m=1, - - -, 7) are prime ideals in R(+/(—BC()) such that
CnlPm=(Pm) (m=1, - - -, 1),2 and (B—C+2+v(—B()) is the ideal

generated by B—C+2+/(—BC().

Equation (3) can hold only if the left-hand side is a principal ideal.
Thus the possible values of x are integer multiples of the order of
the element @ =@ - - . ®¥* in the class group of R(+/(—BC)). If
we set h=order ®, x=hr, and ®"=(H) where HER(+/(—B()),
equation (3) implies
4) uH" = B — C + 2+/(—B(),

where % is a unit in R(+/(—B()).
Thus when @ is an odd integer we have shown that equation (1)
implies an equation of the form

(5) uH" — gH = 41/(— BC),
where H is one of a finite number of integers in R(+/(—BC)), H is
relatively prime to BC, H is not a unit, and « is a unit in R(r/(—BC)).

In the case a =2 an analogous derivation shows that the same condi-
tions must hold except that equation (5) is replaced by

(6) wH* — aH" = /(= BC).
To complete the proof of our theorem we need the following lemma.
LEMMA 2. Let D be a positive integer. Let H be an algebraic integer

in R(n/(—D)) not a unit. Let P=(p1, - - + , pm) be a fixed set of rational
primes all relatively prime to H. Let u be any unit in R(x/(—D)). Then

* P is the ideal conjugate to ®, and (p,,) is the ideal generated by pn.
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there exist effectively computable constants X., - - -, X, such that
x,2X: (=1, 2, - - -, m) implies that the equation

() uH — aH = pi - - pm/(=D)
has no solutions in non-negative integers r; x1, * + * , Xm.

This lemma actually suffices to prove the theorem. We have only
to apply it to equations (5) and (6) to obtain upper bounds on the
exponents 1, * + *, ¥j; %1, * * *, % in equation (1).

We must consider three cases in the proof of the lemma. The first
is when # = +1. In this case equation (7) becomes

(8) H-—H=xp: - pav/(=D).

Let p be a prime in P and let x be the corresponding exponent. Equa-
tion (8) implies

9 Hr = Hr (mod p7).

Denote by r(x) the smallest positive exponent 7 such that congruence
(9) holds. Since H and p are relatively prime, 7(x) is well defined and
the values of 7 which satisfy congruence (9) are integer multiples of
r(x). To obtain the upper bound for x which is called for in the lemma
we choose X so large that there exists a prime ¢&EP and relatively
prime to D such that

(10) H* X = H*® (mod g).
The existence of such a ¢q is guaranteed by Lemma 1 (we assume H
and H are relatively prime, otherwise the lemma is trivial). Such an

X and ¢ may be found constructively by considering the linear recurring
sequence

4, = (H' - F')/(H - ﬁ):

and finding the first 7(X) such that 4, is divisible by some such ¢.?
If x2X and

Hr = Hr (mod p7),
then, as we remarked above, 7 is divisible by r(x). Therefore, from
(10), we also have

Hr = H (mod q).

3 In practice, this search can be further simplified, but since this simplification is
not necessary for the validity of the theorem, we shall not discuss it here.
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In other words if x= X, p= divides H"— H" only if q divides H"— H".
Thus there are 7o solutions to equation (8) for x= X; since p was an
arbitrary prime in P, the lemma is proved if u= +1.

The second case we consider is D=1 and u= ++/(—1). In this
case equation (7) becomes

H+H = ip:‘-"p:."'.

As before, we let p be a prime in P, let x =2 be an integer, and define
r(x) to be the smallest positive integer r such that

(11) Hr = — Hr (mod ).

In this case it is easy to show that the only integers » which satisfy
congruence (11) are odd multiples of r(x). By Lemma 1 we may select
X so large that

H® = — H'® (mod q)

for some ¢ P. Now the proof of the lemma proceeds exactly as be-
fore.

The last case we must consider is D=3 and #= t+w or +w? where
w=(14+/(—3))/2. Let u be fixed, let p be a prime in P and let x be
the corresponding exponent in equation (7). First we shall determine
those integers s for which

(12) uH* = 4H* (mod p*).
Denote by k(x) the smallest positive integer & such that
H* = H* (mod p7),

and by r(x) the smallest positive integer s such that congruence (12)
holds. Let r =7(x) and let s be any integer for which (12) holds. Then,
since p is relatively prime to H, we have

He = Hr (mod p7).
It follows that k(x) divides s —r(x). Thus p= divides uH*— aH* only if
(13) s = r(x) + nk(x)

for some integer n. Now we observe that h=h(x) divides 3r =3r(x).
This follows from the congruence

H¥ = 4 (uH")3 = + (aH")* = H* (mod ).
On the other hand, by the definition of %(x) we clearly have r(x)

<h(x). It follows that either h=3r or h=3r/2. We may replace
equation (13) by
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(14) - {’(x)(3n+ 1), (%) odd,

(r(x)/2)(3n + 2),  r(x) even.
That is, p* divides «H*— @#H* only if equation (14) holds for some
integer n.

We can constructively select an integer X and a prime g#3;
b1, - -+, Pm such that one of the two following cases is true:

r = r(x) is odd and «H" = 4H" (mod g) or

r(x) is even and #2H"/2 = 4?H"/2 (mod g).

r

If there were no such x and ¢, equation (7) (or one like it) would hold
for arbitrarily large values of the exponent x of p. But this contradicts
Lemma 1.

We complete the proof by observing that if r=r(x), x= X, and
uH*=aH* (mod p*), then either

uH* = + (uH?)3 = + (aH")3*! = 4H* (mod q)
or

uH* = + (wH?)3+2 = 4 (@ Hr2)%+ = gH°* (mod q)
as required.
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