ON WITT'S THEOREM FOR NONALTERNATING
SYMMETRIC BILINEAR FORMS OVER A FIELD
OF CHARACTERISTIC 2

VERA PLESS

I. Introduction. The purpose of this note is to show that an ana-
logue to Witt’s theorem holds for a nondegenerate, nonalternating,
symmetric bilinear form f over a field K of characteristic 2 where
f(x, x) takes its values in a subfield K* such that K contains the
square root of any element in K*. As is known [2, p. 171] Witt’s
theorem does not hold in general for a field of characteristic 2. How-
ever, the following shows that an isometry of a subspace can be ex-
tended if it leaves a certain unique vector invariant. The invariants
of a subspace of V with respect to the orthogonal group are deter-
mined.

II. Definitions and background. All forms considered will be bi-
linear and either symmetric or skew symmetric. For a field of char-
acteristic 2 a symmetric form is skew symmetric and vice versa.

The terminology and notation are as in [1, Chapter III].

A bilinear form f defined on a vector space V is called nondegener-
ate if f(x, v) =0 for all v in V implies x=0. A subspace U of V is called
nonsingular if f restricted to U is nondegenerate.

A form f is called alternating if f(x, x) =0 for all x in V. Otherwise
f is called nonalternating.

If Uis a subspace of V, U* is the set of all x in V such that f(x, «)
=0 for all # in U, and U* is a subspace.

A one-one linear transformation ¢ from V onto W such that
f(o(x), a(y)) =f(x, v) for all x and y in V is called an isometry, where
/' is a form on W.

LemMA 1. If V is nonsingular and UCV, then U**= U and dim U
+dim U*=dim V.

LeEMMA 2. If V is nonsingular and UCV, then U is nonsingular if
and only if U* is and in that case V=ULU*.

LemMma 3. If UCYV, then U=(UNU*)L A where A is any comple-
ment of UNU* in U. A s nonsingular.

Lemmas 1, 2 and 3 are proved in Artin [1, Chapter II1] for sym-
metric nonalternating forms over a field of characteristic #2 and for
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skew symmetric alternating forms over any field. These proofs are
also valid for symmetric nonalternating forms over a field of char-
acteristic 2.

A space with an alternating bilinear form defined on it is called
symplectic. Witt's theorem, which we will now state, holds for sym-
plectic spaces over fields of any characteristic.

WITT'S THEOREM (FOR SYMPLECTIC SPACES) [1, p. 121]. Let V and
V' be nonsingular symplectic spaces which are isometric under some
isometry p. Let o be an isometry of a subspace U of V into V'. Then o
can be extended to an isometry of V onto V'.

Note that two nonsingular symplectic spaces of the same dimension
and over the same field are hyperbolic spaces and hence isometric
(1, p. 119].

II1. Characteristic 2 case. In this section we let V' (V’) be a vector
space, nonsingular with respect to a nonalternating form f (f'), of
dimension 7 over a field K of characteristic 2. Let f(x, x) (f'(x’, x"))
take its values in a subfield K* contained in or equal to K. Then we
assume (unless otherwise stated) that K contains the square root
of any element of K*. Note that this is automatically satisfied if K*
is a finite field since all finite fields of characteristic 2 are perfect.

THEOREM 1. V has an orthonormal basis.

Proor. Under the assumption that f is a nonalternating, nonde-
generate form on a vector space V over a field of characteristic 2,
Jacobson [2, p. 170] proves that V has an orthogonal basis e;. If
fles, €;) =a; we can replace e; by e;/+/a; by our assumption on K.

COROLLARY 1. If V and V' have the same dimension and are over the
same field they are isometric.

THEOREM 2. There exists a unique vector h in V such that f(h, x)
=/f(x, x) for all x in V. In addition h= ., e;, where the e; are the
members of any orthonormal basis in V.

PROOF. Let ey, - - -, €, be such a basis and let h= Y _r_, e;. If x is in
V, x= > " oie; so that f(h, x)= D r,a. But f(x, )= n, o
= (Dt @) Hence f(h, x) = v/f(x, x) for all x in V. If g were another
vector such that f(g, x) =+/f(x, x) for all x in V, then f(h—g, x) =0
for all x in V and 2—g=0 by the nondegeneracy of f. An interesting
consequence of this is that % has the representation as the all-one
vector regardless of the orthonormal basis chosen.
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COROLLARY 2.1. If f is a nonalternating, nondegenerate form on a vec-
tor space V over a field of characteristic 2, then V has an orthonormal
basis if and only if K contains the square root of every element of K*.

COROLLARY 2.2. Let V be as in the theorem. Let N={x in V|f(x, x)
=0}. Then N is a subspace of V. In addition N=(h)* and hence
dim N=n—1. If n is odd, N is nonsingular. If n is even, h is in N.

Proor. That N=(h)* follows from the equation f(k, x) = \/f(x, x).
If » is odd, f(h, k) =1 and (k) is nonsingular so that N= (k)* is non-
singular by Lemma 2. If n is even, f(k, #) =0 and & is in N.

If V is of odd dimension, note that V=(h)1N and N=(h)* is
symplectic.

If V is of even dimension, and s is such that f(s, s)=1, then
f(s, B)=1 and (k, s) is nonsingular. Hence V={(h, s).L H, where
H=(h, s)* is nonsingular and symplectic.

THEOREM 3. Let V and V' be of the same dimension and defined over
the same field K. Let p be the isometry between V and V' given by Corol-
lary 1. Let o be an tsometry of a subspace U of V into V'. Then o can
be extended to an isometry on all of V if and only if

(1) ks in U if and only if p(h) is in o(U) and

(2) in case his in U, a(h) =p(h).

Proor. If £ is not in U, p(h) is not in ¢(U) and in that event we can
extend o to (k)4 U by defining o(h) =p(k). ¢ is still an isometry since
f(h, w)=~/f(u, u)=~/flo(u), o(u)) =f(p(k), o(u)) =f(o(h), o(u)) for
all w in U and f(k, k) =f(p(k), p(k)). Hence we may assume that % is
in U, p(h) is in ¢(U) and (k) =p(h).

If W is a subspace of U we shall write gw for the restriction of ¢
to W.

If V is the direct sum of mutually orthogonal subspaces V;, and 7,
are isometries defined on the respective V,, then the mapping 7 given
by 7(») =7(D_v)) = 2_7:(v,) is an isometry on V (v; in V). For two
subspaces this will be denoted as 7, 17..

Consider three cases. The first case is V of odd dimension. Then
U= (h)L(UNN) and ¢ induces an isometry between UNN and
o(U)NN' which can be extended to an isometry 7 on all of N by
Witt’s theorem in the symplectic case. Then 14y.L7 is the desired ex-
tension.

The second case is V of even dimension and U contains an element
s such that f(s, s)#0. Then we can assume f(s, s) =f(k, s) =1. Now
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U= (h, s) L(UNH) and U'=(p(k), o(s)) L(a(U)MN\{p(k), a(s))*). The
isometry induced by ¢ between UNH and o(U)N{p(k), o(s))* can
again be extended to an isometry 7 of H onto (po(k), o(s))*. Then
op* L7 is an extension of o.

The third case is V of even dimension and U contained in N. Here
we write U as (k) LC where C is any complement of % in U. Write U’
as {p(k))La(C). There is an s (s') in C* (¢(C)*) such that f(s, s)
=f(h, s)=1 and f'(s', s')=f"(p(h), s')=1. Extend ¢ to U+(s) by
defining a(s) =s’. Now we are reduced to the second case.

It is clear that any isometry of V onto V' sends an orthonormal
basis onto an orthonormal basis and hence must send the sum #4 into
the sum p(#%). By the preceding theorem, % is the sum of any ortho-
normal basis.

CoROLLARY 3.1. Any isotropic space is contained in an isotropic
space of maximal dimensionv. If n is odd, v=n—1)/2. If n is even,
v=n/2.

Proor. If 7 is odd, the isotropic space W cannot contain % and so
any one-one linear transformation of W into a maximal isotropic
space M is an isometry which can be extended to an isometry ¢ on V,
and W is then contained in the maximal isotropic space o~1(M).

If n is even, k is in any maximal isotropic space and if & is not in the
given isotropic space W, we can adjoin it to W and make sure the
one-one linear transformation sends % into k. Then we are in the same
situation as above.

If e, - -+ -, e, is an orthonormal basis of V and # is odd, e;+ez,
est+es, - - -, en_2te,1 generate an isotropic space of dim(n—1)/2
and it can be shown by direct computation that there is no self-
orthogonal vector orthogonal to it so that it must be maximal iso-
tropic. If # is even, e1+e;, e3+e4, -+ -, en_1+e, generate a maximal
isotropic space of dim /2 for similar reasons.

If U and U’ are subspaces of V, then we say U~ U’ if there is an
isometry on V sending U onto U’. This is an equivalence relation.

The set of isometries with respect to a given f from V onto V
form a group called the orthogonal group of V.

COROLLARY 3.2. A4 subspace U of V has exactly four invariants under
the orthogonal group. They are the four numbers dim U, dim(UNU?*),
dim(UNN), dim(UN(k)).

Hence U~ U’ if and only if they have the same invariant numbers.
ProoF. The necessity is obvious. To prove the sufficiency we con-
sider two situations.
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SupposITION A. UN{h)=U'MN({h)=0.

Because of Theorem 3 we have only to prove that there is an isom-
etry sending U onto U’.

By Lemma 3 we can write U as (UNU*) L4 and U’ as (UUNU'*)
1 A" where 4 and A’ are nonsingular. Since UNU* and U'N\U’* are
isotropic and have by assumption the same dimension, they are
isometric.

Case 1. Assume UCN. Then by assumption U'CN and 4 and 4’
are isometric since they are nonsingular symplectic spaces of the same
dimension.

Case 2. Assume UQN. Then U’ N and it follows that 4 and A4’
have orthonormal bases and so are isometric.

SuprositioN B. UN(k)=U'N(h)=(h).

Here we have to show that there is an isometry of U onto U’ which
sends & into k.

Case 3. Assume dim V is odd. Then U= (k) L(UNN) and U’
=(h)L(U'NN). Let A=UNN and 4’=U'NN.

Since ANA*=UNU* and A'NA*=U'NU'* dim(ANA¥)
=dim(4'MA’*). Now A and A’ have the same properties as U and
U’ in Case 1 and hence are isometric. We extend this isometry to all
of U by sending % into h.

Case 4. Assume dim V is even and UCN. Then by assumption
U’ CN. Asin Theorem 3 we write U as () LC and U’ as (h) LC’. Now
dim(CNC*) =dim(UNU*)—1 and dim(C'NC*)=dim(U'NU’'¥)
—1 so that dim(CNC*) =dim(C’'NC'*). Hence C and C’ play the
roles of U and U’ in Case 1 and are isometric. Again we send % into .

Case 5. Assume dim V is even and U N. This implies U’ N. We
then have U= (h, s) L(UNH) and U’=<(k, s') L(U'MN(k, s')*) where
f(s, s)=f(s, B) =f(s', s')=f(s’, k) =1 as in Theorem 3. Let A =UNH
and 4'=U'N(, s')*. Both A and A4’ are contained in N. Since
AMNA* = UN U*and A’ N A™* = U N U* dim(4d N 4%
=dim(4’MA'*). Again, by Case 1, 4 and 4’ are isometric. We ex-
tend this isometry to all of U by sending % into k and s into s’.

I wish to acknowledge several stimulating discussions with Pro-
fessor A. M. Gleason and Mr. E. Prange. I wish to thank the referee
for suggestions in simplifying Theorem 3 and Corollary 3.2.
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