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SYMMETRIC BILINEAR FORMS OVER A FIELD

OF CHARACTERISTIC 2

VERA PLESS

I. Introduction. The purpose of this note is to show that an ana-

logue to Witt's theorem holds for a nondegenerate, nonalternating,

symmetric bilinear form / over a field K of characteristic 2 where

f(x, x) takes its values in a subfield K* such that K contains the

square root of any element in K*. As is known [2, p. 171 ] Witt's

theorem does not hold in general for a field of characteristic 2. How-

ever, the following shows that an isometry of a subspace can be ex-

tended if it leaves a certain unique vector invariant. The invariants

of a subspace of V with respect to the orthogonal group are deter-

mined.

II. Definitions and background. All forms considered will be bi-

linear and either symmetric or skew symmetric. For a field of char-

acteristic 2 a symmetric form is skew symmetric and vice versa.

The terminology and notation are as in [l, Chapter III].

A bilinear form / defined on a vector space V is called nondegener-

ate if f(x, v)=0 for all v in V implies x = 0. A subspace U of F is called

nonsingular if / restricted to U is nondegenerate.

A form / is called alternating if f(x, x) = 0 for all x in V. Otherwise

/ is called nonalternating.

If U is a subspace of V, U* is the set of all x in V such that/(x, u)

= 0 for all u in U, and U* is a subspace.

A one-one linear transformation a from V onto W such that

f'(a(x), a(y)) —f(x, y) for all x and y in F is called an isometry, where

/' is a form on W.

Lemma 1. If V is nonsingular and UEV, then U**= U and dim U

+dim Ü7* = dim V.

Lemma 2. If V is nonsingular and UEV, then U is nonsingular if

and only if U* is and in that case V = UJ-U*.

Lemma 3. If UEV, then U=(UC\U*)LA where A is any comple-

ment of UC\ U* in U. A is nonsingular.

Lemmas 1, 2 and 3 are proved in Artin [l, Chapter III] for sym-

metric nonalternating forms over a field of characteristic 5^ 2 and for
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skew symmetric alternating forms over any field. These proofs are

also valid for symmetric nonalternating forms over a field of char-

acteristic 2.

A space with an alternating bilinear form defined on it is called

symplectic. Witt's theorem, which we will now state, holds for sym-

plectic spaces over fields of any characteristic.

Witt's theorem (for symplectic spaces) [l, p. 121]. Let V and

V be nonsingular symplectic spaces which are isometric under some

isometry p. Let a be an isometry of a subspace U of V into V. Then a

can be extended to an isometry of V onto V.

Note that two nonsingular symplectic spaces of the same dimension

and over the same field are hyperbolic spaces and hence isometric

[1, p. 119].

III. Characteristic 2 case. In this section we let V ( V) be a vector

space, nonsingular with respect to a nonalternating form /(/'), of

dimension « over a field K of characteristic 2. Let/(x, x) fix', x'))

take its values in a subfield K* contained in or equal to K. Then we

assume (unless otherwise stated) that K contains the square root

of any element of K*. Note that this is automatically satisfied if K*

is a finite field since all finite fields of characteristic 2 are perfect.

Theorem 1. V has an orthonormal basis.

Proof. Under the assumption that / is a nonalternating, nonde-

generate form on a vector space V over a field of characteristic 2,

Jacobson [2, p. 170] proves that V has an orthogonal basis e,-. If

/(ßii ft) =a,- we can replace e¿ by e,/ Voti by our assumption on K.

Corollary 1. If V and V have the same dimension and are over the

same field they are isometric.

Theorem 2. There exists a unique vector h in V such that /(ft, x)

= Vf(x, x) for all x in V. In addition h = ^n_ t e,-, where the e< are the

members of any orthonormal basis in V.

Proof. Let ei, • • • , en be such a basis and let h = 23"=-1 e<- if x is in

V, x=Yri-i&iei so that f(h, *) = £?-i «<• But fix, x)=^i"_1aj
= ( 5^n„i a,)2. Hence/(A, x) = Vfix, x) for all x in V. If g were another

vector such that fig, x) = Vfix, x) for all x in V, then fih — g, x) = 0

for all x in F and h — g = 0 by the nondegeneracy of/. An interesting

consequence of this is that h has the representation as the all-one

vector regardless of the orthonormal basis chosen.
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Corollary 2.1. If fis a nonalternating, nondegenerate form on a vec-

tor space V over a field of characteristic 2, then V has an orthonormal

basis if and only if K contains the square root of every element of K*.

Corollary 2.2. Let V be as in the theorem. Let N= {x in F|/(x, x)

= 0}. Then N is a subspace of V. In addition N=(h)* and hence

dim IV = n — 1. If nis odd, N is nonsingular. If n is even, h is in N.

Proof. That N—(h)* follows from the equation f(h, x) = Vf(x, x).

If n is odd, f(h, A) = 1 and (h) is nonsingular so that N= (h)* is non-

singular by Lemma 2. If n is even,/(A, h)=0 and h is in IV.

If V is of odd dimension, note that V=(h)LN and N={h)* is

symplectic.

If V is of even dimension, and s is such that f(s, s) = \, then

f(s, A) = l and (h, s) is nonsingular. Hence V=(h, s)±. H, where

H=(h, s)* is nonsingular and symplectic.

Theorem 3. Let V and V be of the same dimension and defined over

the same field K. Let p be the isometry between V and V given by Corol-

lary 1. Let a be an isometry of a subspace U of V into V. Then a can

be extended to an isometry on all of V if and only if

(1) h is in U if and only if p(h) is in <r( U) and
(2) in case h is in U, a(h) =p(h).

Proof. If h is not in U, p(h) is not in a( U) and in that event we can

extend a to (h)+ U by defining a(h) =p(h). a is still an isometry since

f(h, u) = Vf(u, u) = Vf(<r(u), <r(u))=f(p(h), <x(u))=f(<r(h), a(u)) for
all u in U and/(A, h) =f(p(h), p(h)). Hence we may assume that h is

in U, p(h) is in cr(U) and <r(A) =p(h).

If W is a subspace of U we shall write aw for the restriction of a

to W.

If V is the direct sum of mutually orthogonal subspaces F,-, and r<

are isometries defined on the respective F¿, then the mapping t given

by t(v) =t(2~2ví) = 2^1TÁvi) is an isometry on F (vt in F,). For two

subspaces this will be denoted as tiA.t2.

Consider three cases. The first case is V of odd dimension. Then

U=(h)A-(Ui~\N) and a induces an isometry between UC\N and

a(U)C\N' which can be extended to an isometry r on all of N by

Witt's theorem in the symplectic case. Then I^Lt is the desired ex-

tension.

The second case is F of even dimension and U contains an element

s such that/(s, s)^0. Then we can assume/(s, s)=f(h, s) = l. Now
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U=(h, s)±iUnH) and tf' = <p(Ä), ff(í))J_(<r(E7)n(p(A), ais))*). The

isometry induced by tr between JJC\H and o-iU)(~\(pih), (ris))* can

again be extended to an isometry r of H onto (p(h), cr(s))*. Then

ch'-Í-t is an extension of <r.

The third case is F of even dimension and U contained in A. Here

we write U as (h)J-C where C is any complement of h in U. Write U'

as (p(ft))-Lo-(C). There is an 5 is') in C* (cr(C)*) such that fis, s)

=fh, s) = l and fis', s')=/'(p(*), »0-1. Extend cr to E7+(s) by
defining <ris) =s'. Now we are reduced to the second case.

It is clear that any isometry of F onto V sends an orthonormal

basis onto an orthonormal basis and hence must send the sum h into

the sum p(ft). By the preceding theorem, h is the sum of any ortho-

normal basis.

Corollary 3.1. Any isotropic space is contained in an isotropic

space of maximal dimension v. If n is odd, v= (« —1)/2. If « is even,

v = n/2.

Proof. If « is odd, the isotropic space IF cannot contain h and so

any one-one linear transformation of W into a maximal isotropic

space M is an isometry which can be extended to an isometry a on F,

and W is then contained in the maximal isotropic space a~liM).

If « is even, h is in any maximal isotropic space and if h is not in the

given isotropic space IF, we can adjoin it to IF and make sure the

one-one linear transformation sends h into h. Then we are in the same

situation as above.

If ei, • • • , en is an orthonormal basis of F and « is odd, ei+e2,

63+64, • • ■ , en_2+e„_i generate an isotropic space of dim(w —1)/2

and it can be shown by direct computation that there is no self-

orthogonal vector orthogonal to it so that it must be maximal iso-

tropic. If « is even, ei+62, 63+64, • • • , en_i+e„ generate a maximal

isotropic space of dim w/2 for similar reasons.

If U and U' are subspaces of V, then we say U~ U' if there is an

isometry on F sending U onto U'. This is an equivalence relation.

The set of isometries with respect to a given / from F onto F

form a group called the orthogonal group of F.

Corollary 3.2. A subspace U of V has exactly four invariants under

the orthogonal group. They are the four numbers dim U, dimiUr\U*),

dimiUr\N), d\miUr\(h)).

Hence U~ U' if and only if they have the same invariant numbers.

Proof. The necessity is obvious. To prove the sufficiency we con-

sider two situations.
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Supposition A. Ur\(h)=UT\(h) = Ç).
Because of Theorem 3 we have only to prove that there is an isom-

etry sending U onto U'.

By Lemma 3 we can write U as ( UC\ U*) LA and U' as ( UT\ U'*)

LA' where A and A' are nonsingular. Since UC\U* and UT\U'* are

isotropic and have by assumption the same dimension, they are

isometric.

Case 1. Assume UEN. Then by assumption U'EN and A and A'

are isometric since they are nonsingular symplectic spaces of the same

dimension.

Case 2. Assume UCX.N. Then U'<X.N and it follows that A and A'

have orthonormal bases and so are isometric.

Supposition B. UC\(h)=UT\(h) = {h).
Here we have to show that there is an isometry of U onto U' which

sends A into A.

Case 3. Assume dim V is odd. Then U=(h)±(Ui\N) and U'

= (h)±(UT\N). Let A = UnN and A' = U'i\N.
Since AC\A*=Ur\U* and AT\A'*= UT\U'*, dim^fVl*)

= à\m(A'C\A'*). Now A and A' have the same properties as U and

U' in Case 1 and hence are isometric. We extend this isometry to all

of U by sending h into A.

Case 4. Assume dim V is even and UEN. Then by assumption

U' EN. As in Theorem 3 we write U as (h)LC and £/' as (h)±C. Now

dim(CnC*)=dim(t/nr/*)-l and dim(C'nC'*) =dlm(UT\U'*)
-1 so thatdim(CnC*)=dim(C'nC*). Hence C and C" play the
roles of U and Í7' in Case 1 and are isometric. Again we send A into A.

Case 5. Assume dim Fis even and U(£N. This implies U'(\_N. We

then have U=(h, s)±(Ur\H) and Z7'=(A, s')±(Cm<A, s')*) where

/(s, 5) =/(s, A) =/(s', s') =/(«', A) = 1 as in Theorem 3. Let ¿1 = UC\H

and A'=UT\(h, s')*. Both ^4 and ^4' are contained in IV. Since

A r\ A* = U r\ U* and A' C\ A'* = U' C\ U'*, dim(A H A*)
= dim(^4'P\^4'*). Again, by Case 1, A and A' are isometric. We ex-

tend this isometry to all of U by sending A into A and s into s'.

I wish to acknowledge several stimulating discussions with Pro-

fessor A. M. Gleason and Mr. E. Prange. I wish to thank the referee

for suggestions in simplifying Theorem 3 and Corollary 3.2.
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