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1. Statement of the result. Let A =(a,y) be an w-square non-nega-

tive hermitian matrix. A classical inequality of Hadamard states that

(1) det A è ft an

with equality if and only if A has a zero row (and column) or A is a

diagonal matrix: A =diag (an, • • • , ann). Several generalizations are

known (e.g. [l]).

Let per A denote the permanent of A,

n

(2) per A = 2-,TL »»>«),

where the summation extends over the whole symmetric group of

degree n. It was conjectured in [4] that in analogy with (1),

n

(3) per ̂  ^ II «■•■

with the conditions of equality precisely those in the Hadamard de-

terminant theorem. L. Mirsky recently listed this conjecture among

several other problems concerning the permanent function [S]. This

conjecture was suggested by an inequality of I. Schur [6] (see also

[4]):

per A jg det A.

In an unsuccessful attempt [3] to prove (3) H. Mine and the pres-

ent author obtained an inequality of the form

n

per A ^ cn II an

in which the constant c„ depends only on n and not on A.

It is the purpose of this paper to present the proof of an inequality

that substantially generalizes (3) and to discuss the somewhat deli-

cate cases of equality. Let A (i) denote the principal submatrix of A

obtained by deleting row and column i of A. The main result is

contained in the following
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Theorem 1. Let A = (atJ) be an ir + i)-square non-negative hermitian

matrix. Then

(4) (r + l)a« per Aii) ^ per A ^ an per Aii),       1 ¡g i ^ ».

// .4 Aas a zero row /Aew (4) î's equality throughout. If A has no zero row

then the lower equality holds if and only if a¿< is the only nonzero entry

in row and column i of A; the upper equality holds if and only if the rank

of A is 1.

The permanent is unaltered by pre- and post-multiplication by

permutation matrices so that we can take i= 1 in proving (4).

Once (4) is established it is clear that an obvious induction on r will

yield .

Theorem 2. If A = (ay) is an n-square non-negative hermitian matrix

then

n

(5) per A è II aa

with equality if and only if A has a zero row or A is a diagonal matrix.

2. Preliminaries. Let U be an «-dimensional unitary space with

inner product (x, y). For lgr^« define i/(r) to be the space of r-

tensors on U [2, Chapter 7]; that is, L™ is the dual space of the

space Mri U) of all multilinear functionals of r-tuples of vectors from

U. If Xi, • • • ,xrarein U then their tensor product Xi ® ■ ■ • ®xrEU{r)

is defined by

xi® ■ ■ ■ ® xri4>) = <pixh • • • , xr),       d> E M,(U).

An inner product in t/(r) is given by

r

(6) (xi ® • ■ ■ ® xr, yi ® ■ ■ • ® yr) = H (x,-, y().
t=i

Define the completely symmetric operator 5(r): £/(r)—>t/(r> by

(7) 5(r)(Xi ®   ■ ■ ■ ® Xr)  = — Y, Xa(.l) ®  • • •  ® ¡*r<r>,
fi   a<ESr

where 5r is the symmetric group of degree r. The symmetric product

of Xi, • • • , xr is then defined by

(8) Xi ■ ■ ■ xr = SMixi ® ■ ■ ■ ® xr).

The range space of 5(r) is the symmetry class of completely symmetric
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tensors on U denoted by C/(r) and since it is a subspace of i/(r) it is

unitary. By combining (6), (7), (8) we compute that the inner prod-

uct of two symmetric products is

1
(9)      (*!••■ xr,yi ■ ■ • yr)r = — per ((*,-, y,)),        v Ú i, j Û r.

r\

(The formula (9) is an immediate consequence of the fact that 5(r) is

idempotent and hermitian.) Next let Gr,„ denote the totality of non-

decreasing sequences of length r chosen from 1, • • • , n. If a>£G>,„ let

ß(o>) be the product of the factorials of the multiplicities of the dis-

tinct integers in a>; e.g. ß(3, 3, 7, 7, 7, 9) = 2!3!. If e\, • • ■ , en is an

orthonormal (o.n.) basis of U then the

m
symmetric products y/(r\/ß(o}))eai ■ ■ • ea,, (coi, • • • , wr)=w£Gr,n,

constitute an o.n. basis of U(r) in the inner product ( , )r. We let

3. Proofs. Assume that A is (r + 1)-square and has no zero row and

let D = diag((iri1/2, 1, • ■ • , 1). Then the 1, 1 entry of B = DAD is 1,

per B= aïi per A, A(V) =B(l), and B is also non-negative hermitian.

If we prove Theorem 1 for B we will clearly have the result we want

for A. Since B is non-negative hermitian it follows that B is a Gram

matrix based on some set e\, »i, • • • , vT where e\ is a unit vector:

bn = 1 = (ei, ei),

ii, y+i = 5j+i,i = (ei, v¡),       j = 1, • • • , r,

bi+ij+i = (ví, Vj),       i,j = 1, • • • , r.

Let e2, • • • , en be a completion of eL to an o.n. basis of U. Define a

map T: [/(r)—>c7(r+i) by T(eu)=ei-eai • • • e„r, all w=(coi, • • • , «,)

EGr,„, and extend linearly. It is an easy consequence of the symmetry

and linearity of the symmetric product in its factors that

T(xi ■ ■ ■ xr) = ei-xi • ■ • xr

for all Xi, • • • , x, in U. Let R £ U(r+i) denote the range of T and let

T* denote the conjugate dual map of T; T*: R—*Uw That is, T*

satisfies

(Th, g)r+i = (h, T*g)r       for all h £ U(r), g £ R.
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Next let/(xi, • • • , xr) denote the Rayleigh quotient

(Pxi ■  ■  ■ Xr,   Txi ■  •  ■ Xr)r+i
/(*1,   ■   •   ■  ,Xr)   =-"-

\%1  '   '   *  %rj  %1  *   *   '  %r)r

iT*TXl ■ •  • Xr, Xl ■ ■ • xr)r

^Xl   •   •   •  Xr,  Xl   '   '   '  %r)r

Now let H denote the non-negative hermitian transformation

T*T: Z7(r)—*t/(r). It is easy to verify [4, Theorem 3] that Xi • • • xr = 0

if and only if some x, = 0. Thus/(xi, • • • , xT) is defined for all sets of

r nonzero vectors Xi, • • • , xr in U and it is known that such values of

/ lie in the interval between the largest and smallest eigenvalues of H.

We compute the eigenvalues of H by obtaining a matrix representa-

tion of H. The basis Vi?!/M(w))e«> co GGr,„, ordered lexicographically in

co, is o.n. for U(T) and the (t, w) entry of the matrix representation of H

in this ordered basis is

(11) rl (He., eT)r.

VÍp(oi)pÍt))

Now

iHe„, er)r = (r*r«„, eT)r - (7X,, Per)r+i

(12) = (ei-ewi • • • cUr, ereT1 • • • err)

=   («d,«), e(l,T))r+l

where (1, w) is the sequence (1, wi, • ■ ■ , wr)£Gr+l,„ and similarly for

(1,t). The vectors Viii,-\-í)}./^(a))ea, o¿EGr+i,n, are an o.n. basis for

U(r+i) in the inner product ( , )r+i. Moreover (1, w) = (l, t) if and

only if ío = t. Hence from (12) we have

pjjl, co))
(i/Co,, eT)r = -———- Su,r.

(r + 1)!

Thus the matrix representation of iî in the basis VO" !//*(<<>))«„ is

diagonal and the eigenvalues of H are seen from (11) to be

r!
XuiH) = ——- iHew, eu)T

m(»)

rl    „((!,«))

m(«)   (f+l)l

1        m((1, co))

r + 1     m(«)
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Clearly ju((L w))^m(w) with equality if and only if coi>l. Thus the

minimum eigenvalue of H is l/(r + l) and the symmetric tensors

ßm «i>l, constitute the totality of corresponding eigenvectors. Sup-

pose the multiplicities greater than 1 of the distinct integers in a are

nil, • • • , mp. Then the multiplicities for (1, co) are either mi, ■ • ■ ,mp

or Wi + 1, m2, • ■ ■ , mp. In the first instance wi>l and /i((l, u>))/ß(ai)

= 1; in the second o>i=l and ß((i, o>))/ß(o}) =Wi + l. This latter ex-

pression is maximal only when mi = r, i.e., for the sequence

«= (1, • • • , 1). Thus we conclude that

(13) 1 è/(*i, ••-,*,) è
r+\

The lower equality holds if and only if xx • • • xr lies in the space

spanned by the tensors ea, Wi> 1, w£Gr,„. The upper equality holds if

and only if Xi • • • xr is a multiple of ei • • • e\. Now by (10) we have

f(n, ••-,»,) =
(Tvi • ■ • vT, Tvi ■ ■ ■ vr)r+i

(»!•••  IV, Vl  ■   •   ■  VT)r

(ei-v! • • • vT, ei-Vf • ■ tv)r+i

(vi • ■ • V„ Vl • • • »r)r

1

(f + l)l
per£

— Per B(i)
r\

1 per£

r + 1  per B(i)

and it follows from (13) that

(14) (r + 1) per B(i) ^ per B ^ per B(l).

As we indicated earlier (4) follows from (14).

We noted following (13) that the lower equality can hold if and

only if

(15) »i • • • v, — 2~2 Ccä

where the summation extends over all w£Gr,„ for which wi>l. We

prove that (15) implies that (z\-, eî) =0, i = 1, • • • , r. Let h denote the

tensor on the right side of (15). Then
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ivi • ■ ■ vr, ei • • • ei)r = H ivk, ei)

and

(h, ei • ■ ■ e,)r = 23 cÁe«, «i • • ■ «i)r = 0.
»i>i

Hence some (v¡, ei) = 0 and from the symmetry of the symmetric

product we can assume .7 = 1. Suppose we have proved that (»i, Ci)

= • • • = (»*, «0=0. Since no t\- = 0, i=\, • • ■ , r, we know [4,

Theorem 3] that O^i ■ • • vkEU(k). The tensors ea, aEGk¡n, con-

stitute a basis for U(k) and because vi • ■ ■ vk^0 there exists an

aEGk,n for which fa • • • vk, eJt^O. Let/3=(1, • • • , 1, «i, • • • , a*)
EGr.n where the notation means that a has been preceded with

r — k l's to make a nondecreasing sequence of length r. Now once

again (A, e¿) =0 and hence

0 =  (j>i •  •  • VT, Bß)r =  (»l •  •  • !>i-»*+l •  •  • «i, «1 *  ' * «l'««, ' • • Cai)r

(»i, ei) • • • (»i, d)     I     ivi, eai) ■ ■ • (vi, eail)

1
per

(»*, ei) • • • (»*, ei)

(»*+i, ci) ■ • • (»*+i, ei)

{   (vT, ei) ■ ■ ■ (vr, ei)

(»*, cai) • • • ivk, eak)

ivk+i, eai) • • • ivk+i, eak)

(vr, eai) ■ ■ • (vr, eak)

The upper left block in this last matrix is kXir — k), the upper right

block is kXk, the lower left is (r — k)X(r — k) and the lower right is

ir — k)Xk. The upper left block consists of zeros and hence by the

Laplace expansion theorem for permanents we have

0 = per

[(vi,eai) ■ ■ ■ (i-i.Ol

(»*, eai) ■ ■ ■ (vk, eak)

per

(vk+i, ei)

{    (»r, ei)

(Pt+i, et)

Ov, ei)

= ä!(»i ■ • -Vk, ea)kir — k)l II ivj, ei).

Now (fi • • • Vk, eJt^O and hence some iv„ ei) =0, j — k+i, • • • , r.

We can assume (»*+i, ei) = 0. Thus we have proved (i\-, ei) = 0,

t=l, • • • , r. In terms of the matrix B this implies that Oiy = 5yi = 0,

j=2, • • • , r+1, and hence 5 = 1+5(1).
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If the upper equality holds then Vi ■ ■ ■ vr was seen to be a multiple

of ei • ■ ■ e\. Since we are assuming that A has no zero row it follows

from [4, Theorem 3] that ü, = d¿ei, i=\, • • • , r, and hence B is the

Gram matrix based on the set ex, dxei, • • ■ , dfii. This means that B

and hence A has rank 1, say A = (z,Zj), i, j = l, • • • , f+1. Of course,

when A has this form then

r+l r+1

per¿ = (r+l)lll UK       per 4(1) = r! Ü I *yI2
y=i y=2

and clearly per A = (r+l)ffii per A(l). This completes the proof of

Theorem 1.

References

1. E. Fischer, Über den Hadamardschen Determinantensatz, Arch. Math. Phys. (3)

13(1908)32-40.
2. N. Jacobson, Lectures in abstract algebra, Vol. 2, Van Nostrand, New York,

1953.
3. M. Marcus and H. Mine, The Pythagorean theorem in certain symmetry classes

of tensors, Trans. Amer. Math. Soc. 104 (1962), 510-515.

4. M. Marcus and M. Newman, Inequalities for the permanent function, Ann. of

Math. (2) 75 (1962), 47-62.
5. L. Mirsky, Results and problems in the theory of doubly-stochastic matrices,

Z. Wahrscheinlichkeitstheorie 1 (1963), 319-334.
6. I. Schur, Über endliche Gruppen und Hermitesche Formen, Math. Z. 1 (1918),

184-207.

University of California, Santa Barbara


