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THE MARCINKIEWICZ INTERPOLATION THEOREM1

RICHARD A. HUNT AND GUIDO WEISS

We show that the Marcinkiewicz Theorem on the interpolation of

operators acting on Lp spaces (see [3, pp. 111-116]) is an immediate

consequence of two easily proved inequalities. The first one is a well-

known result of Hardy (see [l, pp. 245-246]):

If q ^ 1, r > 0, and g is a measurable, non-negative function on (0, <» ),

then

a oo   /     n t \« \l/3 g    I    /. » \l/j
M g(y)dy)i-'-'dt)    =—(J   (yê(y))ty-r-ldy)   and

(J   (J( g(y)dy)r-W)      á ̂ -(Jo iygiy))*y-ldy)   .

The second one can be found in [2 ] :

If g is non-negative and noninct-easing on (0, oo), 1 ̂ q, gg2^ <x> and

1 úpú co, then

a,     dtV«*       ( öA1^-"«!/ f<°r ,    ¿/\i/«i
. [''"^i*'t)   s(|)    (J. [<"**«* t) •

If h is measurable on a measure space M with measure m, its dis-

tribution function is defined for y>0 by Miy) —My) =m{xEM;

fix)>y}.
The nonincreasing rearrangement of h onto (0, oo) is then the

function given by h*it) =inf {y>0; X(y) ¿t], t>0. Both h* and X are

non-negative and nonincreasing functions that are continuous from

the right, h* and h have the same distribution function, thus ||A*||P

= |WIj>- Moreover, supI/>oy{X(y)}1/3 = supi>o tllqh*it). Consequently

the theorem of Marcinkiewicz can be stated in the following way:

Suppose T is quasi-linear2 and, for l¿piSqt^ °°, *' = 0, 1, with

po<pi, qo^qi,
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1 This research was supported by the U. S. Army Contract DA-31-124-ARO(D)-58.

1 An operator T mapping functions on a measure space into functions on another

measure space is called quasi-linear if T(f-\-g) is defined whenever Tf and Tg are

defined and if| T(f+g)(x)\ ^K(\ Tf(x)\ +\ Tg(x)\ ) a.e., where K is a positive con-

stant independent of / and g.
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(3)       sup *»'«>**(<) g Bi\\f\\Pi        for all fin Lp>,       i = 0, 1,
!>0

where h=Tf and B0, Bi are independent of f. Then, for 0 <8 < 1, there

exists B = Be such that \\h\\t = \\Tf\\t£B\\f\\„ for all f in L*>,   \/p
= (l-O)/Po+0/pi and l/2=(l-0)/2o+0/2i.

Proof. Put

(f(x)       if |/(»)|  >f*(P),
/ (*) = {

(.0 otherwise,

and /<=/—/', where

_ (1/go) - (!/«) _ (1/g) - (l/gl)

7      (l/#o) - (l/P)      (UP) - (1/ii) '

Then it follows easily that

r(y) * f(y)   if ° <y < r>
(4) J  '  'lo if,**

i/*(/>)       if 0 < y < f»,
/f(3,) á f ;

Suppose pi<œ. Using (2),

dtyi"
[<(i/4)(r/)*(/)j4

It follows easily from the definitions that

s(f)       (/„["""( w)]-7)

(r(/,+/9)*(i) s 2Ar((r/,)*(y) + (r/o* (y)Y

Using this, a change of variables and Minkowski's inequality we

majorize the above by

(2K)2^ (pjh    " {( / " [t^(TP)*(t)Y jjh

By (3), this is dominated by



998 R. A. HUNT AND GUIDO WEISS

(2X)2"«Í — J Uj ¿1/a-l/^o r J      [yMHf(y)]pa-±\ \—\

. L,"'"""(/. l'"^«)"7)  J t) }•
which, by (4), (2) and Minkowski's inequality is majorized by

/*\l/ir-l/fl

(2£)2««f — J

•{(/."['"*""-(¿r'""(/."y^w
a'Mr       /i\i_1/Pi/ /*°° ¿y\T *\.['•"-*'*■ U    (J>"™7)] t)
a'T / ly-^H i r y,y dy\y dtyi?)

A'"-"'(jJ    (/. ",w,7)]t) }'
Finally, by a change of variables and (1) the last expression is less

than or equal to

dy

y

p dtyip

p dl\llp

i2K)2l
l/p-l/5

lQ

(!)

IV-upi

\pj     \p) \p)     \pJ
+ Bip1'^ \p=B\\f\\p-

In case pi — q2= °° the proof is the same except for the use of the

estimate \\fÍ\m£f*(p).
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