HOMOTOPY GROUPS OF COMPACT ABELIAN GROUPS
EDGAR ENOCHS
The object of this paper is to prove the following:

THEOREM. For any compact Abelian group G, w,(G)=0 for n=2
and m(G) is isomorphic to the group of homomorphisms of G* (the
Pontrjagin dual of G) into Z (the group of integers).

Preliminaries. B, (resp. S,-1) will denote the subset of R* consist-
ing of those x such that ||x|| <1 (resp. ||«|| =1). %, will denote the point
(1,0,0,:--,0) of R* and T will denote S; made into a topological
group by using complex multiplication. All groups will be assumed to
be Abelian.

For a based topological space X and a topological group G, let
C(X, G) denote the set of maps (i.e., base point preserving continuous
maps) of X into G (where G is considered to be a based topological
space with base point 0). In an obvious fashion, €(X, G) can be
endowed with a group structure. In case X is also a topological group
(considered as a based topological space with base point 0) let
Hom(X, G) denote the subgroup of (X, G) consisting of those maps
which are homomorphisms. The spaces B, and S,_j will all be as-
sumed to be based with x, as a base point.

If G is a discrete or compact group we let G* denote the group
Hom(G, T) endowed with the topology of compact convergence.If
G is compact (resp. discrete) then it is known that G* is discrete
(resp. compact). Also for two discrete or two compact groups G; and
G, we have an isomorphism from the group Hom(G;, G:) onto
Hom(G:*, G*) where an element fEHom(G,, G,) is mapped onto its
transpose f*. Furthermore a sequence of compact (or discrete) groups

GII’ Gz—g’ Gs

is exact if and only if the sequence
g S

G#=> G > Gt
is exact (see Weyl [1]).
Using a general existence proof (see Bourbaki [2, p. 44, Theorem
CST 22]), it can be shown that for every based topological space X
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there is a compact group X and a map 4: X—X such that if ¢: X—G
is any map where G is a compact group, then there is a unique map
f: X—G such that f 0o i=¢. Thus for any compact group G we get a
natural isomorphism between the groups Hom(X, G) and €(X, G).
We say that 7 is a free compact group on X. It is easy to see that ¢
is an injection if X is completely regular since, if G is taken to be the
product of sufficiently many copies of T, then ¢ can be chosen to be
an injection.

Now let j,: S,—S, and k,: B,— B, be free compact groups on S,
and B,, respectively, and let &, be the unique continuous homomor-
phism from S, into B, such that

in
S — Bn+1

ljn |k

S _) Bn+l

is commutative where 7, is the canonical injection.

Now for any topological group G, m,(G) is isomorphic to the quo-
tient of the group €(S,, G) by the subgroup of €(S,, G) consisting of
those elements that can be continuously extended to B, (see Hu [3,
p. 139, Example G]). But this subgroup is precisely the image of
€(Bny1, G) in @€(S,, G) under the restriction map. Thus 7,.(G) equals
the cokernel of the restriction map

C(Bnt1, G) — C(Sa, G).
But we have a commutative diagram
€(Bunt1, G) ——> €(S, G)
- f Hom(k,, G) f -
Hom(B,1, G) —— > Hom(S,, G)

where the vertical maps are the natural isomorphisms and the top
map is the restriction map. Thus for any compact group G, m.(G)
and Coker(Hom(h,, G)) are isomorphic. But

- Hom(k,, G)
Hom(B,t1, G) ——— Hom(S,, G)
! !
Hom(G*, h.¥)

Hom(G*, Bry) —— = Hom(G*, 3.¥)

is commutative where the vertical mappings are the transpose map-
pings (hence are isomorphisms). Thus m,(G) is isomorphic to
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Coker(Hom(G*, k,*)). We will try to show that Coker(Hom(G*, k.*))
is isomorphic to Hom(G*, Coker k.*)
Proor oF THEOREM. Let

h

t’l -~ N =~ n
O*Mn—)sn")BfWIiNn'_)O
be an exact sequence of compact groups. Then

1* h* ) ¥

0¢—— M¥e——3¥——BX 16— NF¥e——0

is an exact sequence of discrete groups. Thus M,* is isomorphic to
Coker £k,*. But

S e————— Bap1

l l
(S, T) &— €(Bus1, T)

is commutative with the vertical maps, the natural isomorphisms and
the bottom map, the restriction map. But then Coker %.* is isomorphic
to m.(T) since the cokernel of the bottom map is w.(7). Thus
M#=Z7 and M. *=0 for n=2 since m(T)=Z and 7,(T)=0 for n=2.

Furthermore we claim N,* is divisible for #=1. For Nz* is iso-
morphic to the kernel of the map

*
B’nﬁ-l ‘—:—) Sn* )
hence to the kernel H of the restriction map
©(Ba-y, T) — C(Sn, T).

Let B.;1/S. be the quotient space of B,y by the equivalence rela-
tion which identifies all the points in S,. Then H is isomorphic to
C(Bn41/Sn, T). But Ba41/S, is homeomorphic to S,41. So H is iso-
morphic to €(Sa41, 7). But 7,11(T) =0 for =1, hence any map
S.11— T is homotopic to a constant mapping. Thus, the map S,y —T
can be “factored through R” by the exponential map R—T (see
Dieudonné [4, p. 248]). Thus €(S.41, T) is isomorphic to a quotient
of €(S,41, R) which is clearly divisible. Thus €(S.41, T) is divisible
and so H and N,.* are divisible.

Recalling that M*=Z or 0 we see that the sequence

L, ‘h,.* .

%*
0 Mptsram pa P Nr——o
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is split exact, i.e., it is exact and the kernel of each map is a direct
summand of the domain of the map. Hence, for a compact group G,

Hom(G*, t.¥) ~ .. Hom(G*, k.¥)
0 «—— Hom(G*, M,}) ———— Hom(G*, S,}) ——

=,  Hom(G*, pu¥)
«—— Hom(G*, B.},)) ———— Hom(G*, N,}) «—0
is exact (even split exact). Thus Coker(Hom(G*, %,*)) is isomorphic
to Hom(G*, M.*). But Coker(Hom(G*, k,*)) is isomorphic to m,(G).
Hence 7,(G)=0 for n=2 since M,*=0 for n=2 and m,(G) is iso-
morphic to Hom(G*, Z) since M{*=~Z. This completes the proof.
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