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Let (I, +, •) be a ring. A central problem in topological algebra

is to determine what (Hausdorff) topologies on 1" are compatible with

the ring operations. If â is any family, of ideals, with the finite inter-

section property and such that C\a = (0), then è is a basis for the

neighborhood system of zero with respect to a ring topology on /.

Such a topology is called an ideal topology. If (I, +, •) is the ring

of integers there are, of course, many such topologies. Indeed, a natu-

ral question is whether or not all ring topologies on the integers are

of this form.2 In this paper we answer this question in the negative.

In §1 a method is given for constructing nonideal topologies on the

integers. In §2 it is shown that there exist uncountably many such

topologies. Finally, in §3, these methods are utilized to demonstrate

the existence of a ring topology on I which is not first countable.

1. Nonideal topologies. Throughout the paper, / will denote the

ring of integers, N the set of non-negative integers, and Nr the set of

non-negative integers less than or equal to r. If A Ç.I, we will denote

{\a\, aEA} by \a\.

Lemma 1. Suppose (-C)nsm is a double sequence of finite subsets of I

containing zero and such that for all n, mEN with n + i^m,

m m

(1) Cl +      U      In+l C   U   i'n,
r=n+l s=n

m m

(2) fn+l   . U      fn+l Q   U   l\,
r=n+l *=n

m

(3) A^+1-lñ+i £ U /',

(4) TThI Q iZ,

(5) c = - /:,

(6) inf [ ZÔ+1 — {0} |  — sup| 701  £ n + 1.
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Let V= { Vn: F„ = U„»B/™}, nEN. Then V is a fundamental system

of neighborhoods of zero with respect to a nonideal ring topology on I.

Proof. It is apparent that V is a decreasing chain of subsets con-

taining zero and hence is a filter base. That V defines a ring topology

follows from the fact that Fn+1± Fn+iÇ F„, Fn+i- Fn+iÇ V„, and

«• Fn+iCF„. From (4), (6) and the definition of F„, it follows that

inf | F„~{0}| =inf |J^~{0}| ^« + 1. Thus fh)={0} and hence the

topology is Hausdorff. To see that V does not define an ideal topology,

let pi be a nonzero ideal of I. By (6) inf | Zf+1— {O} | -sup |/j|

^p + 1. Since sup |i"o| and úif l^o+1~{o}| are consecutive elements

of Vo, pIQ: Vo- Consequently, no member of V contains a nonzero

ideal.

Lemma 2. There exists a double sequence (/")»*»» °f subsets of I,

having properties (l)-(6).

Proof. Using induction and the countable axiom of choice, we will

construct the desired double sequence. The reader will observe that

the necessity of invoking the axiom of choice can easily be avoided ;

however, its use at this stage simplifies the proof of later theorems.

We begin the construction by setting /¡J= {o}. The inductive as-

sumption is that we have defined a finite double sequence (/¡Dostams*,

satisfying (l)-(6).

Next we choose ak+i>ik-\-2) sup| 7¿| and set

Ik+l = Jk+l =   (0, ak+l,   — fffc+lj

and

/T  = Jk= iJk+i + /*+i) W iJk+vJk+x) W iNk-Jk+i).

For 0 5= r < k we set

/,  -   iJr+l + /r+l)  W iJr+1-Jr+l) W (Nr-Jr+l)

u[/h-x+   U   /;+11u[/,+1-   U   I'r+X
L «=r+l J L ,=r+l J

Finally for 0^r<&, we set

7*+1 = (/r~û/;)u{o}.

Before proceeding with the inductive step, it is convenient to

establish the following.



i964] INTEGER TOPOLOGIES 993

Lemma 3. Every nonzero element of Il,+l is of the form pak+i+b, where

p?£0 and bEU*mr £•

Proof. We suppose that the lemma is false and that r is the largest

integer such that the result fails. From the definition of /£+} and ll+1,

it is clear that r<k. Let c be a nonzero element of I,1, which is not

of the desired form. We will obtain a contradiction by assuming that

c is an element of one of the sets whose union is J,.

If cEJr+i+Jr+i, then c = a+b where a, bEJr+i- First we will show

that any element e of JT+i can be written in the form e=fak+i+u

where/£/ and w£UÍ=r+1 Pr+l. It is evident from the definitions that

for r+l^kwe have /r+1Ç7rtÎ11U(UÎ_f+11'r+Ï). If eEIÎtî, the assertion

follows from the maximality of r ; if eEl)¡~r+i I'+i we can choose/= 0,

u = e and again the assertion holds. Thus we may choose/, gEI and

u, f£Uf_r+i I'+i such that«=/a44-i+M and b = gat+i+v. Then c = a + b

= (/ + i)ak+i + (u + v).   Moreover,  u + v £ Uf_r /*, since u + v

e(u;_f+1 rT+i)+QJLT+i rT+1)QUlr+i (S+1+Uî_r+1 i,+l)çuî_r+I uj.r /;

= UÎ_r/r. Thus by our choice of c, p+q — 0 and hence 0 9ic = u+v

£UÎ_r I'. From the definition of J*+1 it follows that c^I^+1, contrary

to our initial assumption. A similar argument shows that c is not an

element of any of the other defining sets whose union is J,. This

establishes the lemma.

Next we will show that the family (/")nSmst^'(7f+1)osrs4+i satisfies

(l)-(6). First we will verify that the family satisfies (1).

From the definitions we have that Jr contains (Jr+i + Jr+i) and

(IT+i+\Jtr+i I'r+i), and that Jr+1 contains 1%}. Thus Jr^(Jr+i+lfti)

U (Jr+1 + Uî_r+11'r+1) = Jr+i + Uî.r+1 rr+l. Moreover, since 7rt+1

= (/r-Uî.r+1/r+1)W{0}, we have /^(/r+i + U^+i^+i)~UÎ_rIr

Síiííí+U^V, TÎ+.iJ-UÎ-^ I'T and hence UÎ+1 /^/?íí+U^+; I'r+1.
This establishes (1); a similar argument establishes the validity of

(2) and (3).

If o is a nonzero element of 1*+}, then, by Lemma 3, a = pak+i+b,

where p^O and 5£UJ=r+1 7r*+1. Thus \a\ =\pak+i+b\ ^\p\ -\ak+i\

-\b\^\ak+i\-sup\lt0\^(k + 2) sup|/5|-sup|JÎ|è(^ + l) buP|/S|.
Hence ö£/r~Uf.f Fr = Irt+1 and (4) follows. Condition (5) follows

from the fact that all of the defining sets of Jr are symmetric

as is U*_r I*. Finally, from the verification of (4) it is clear that

inf|/0t+1~{0}|-sup|/0l|^A + l.

This completes the induction. Lemma 2 now follows from the obvi-

ous application of Zorn's lemma. Combining Lemmas 1 and 2, we

now have :

Theorem. There exists a nonideal ring topology on the ring of integers.
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For lack of a better name we will call topologies obtained as above

topologies of type (*). The sequence a0 = 0, a„ = inf|l£~{o} |, «>0,

will be called the defining sequence (0/ the topology).

2. Uncountably many ring topologies. In this section it is shown

that there exist uncountably many ring topologies on I.

Let {l3(«)}n6jv be a sequence (possibly finite) of fundamental

neighborhood systems of zero with respect to topologies of type (*).

We will denote the defining sequence of T)(«) by (a («),). The sets

Iin)'T and F(«)r will have the obvious interpretations.

Lemma 4. Let V in) be a sequence ipossibly finite) of fundamental

neighborhood systems of zero with respect to topologies of type (*). Then

there exists a defining sequence (a,)lS¡v such that for every O^t^s there

exists a qEN such that

(A)      sup I A I < inf I Iit)l~ {0} I < sup I /(Oo |< inf | /o'+~ {O} | .

Proof. We will inductively construct the sequence (ßi). Clearly

we can choose ax so that sup| 7(0)¿| <inf| /¿~{o} |. Suppose that for

O^s+1 ûk we have defined a.'s such that (A) is satisfied. It is clear

that, for each 0^/g£ + l, there exists mEN such that sup|/J|

<inf| J(i)?~{°}|- For each Ogrgfc + l, let mt be the first such.

Since U?=o litio' is finite the supremum of this set exists. Choose

a,c+i> 3(¿ + l) sup I Uf+o1 Iit)o'\. As in the proof of Lemma 2, it follows

that
¡fc+i

sup u nt)7 <inf|/0+1~{0}

Hence we have

sup I 7o I < inf I Iit)7 ~ {0} I < sup I I(t)T I < inf I 7*0+1 ~ {0} | .

The lemma now follows by the usual Zorn's lemma argument.

Corollary. There exist uncountably many topologies of type (*).

Proof. Suppose there exist at most countably many and let °U(«)

be the corresponding bases for the neighborhood systems of zero. By

Lemma 4, there exists a defining sequence which yields a topology

not in the list.

3. Ring topologies which are not first countable.

Lemma 5. If 3 is a topology of type (*), there exists a topology 3* of

type (*) such that 3 $3*.
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Proof. Let the fundamental neighborhood system of zero with

respect to 3 be denoted by V(i). In the construction employed in the

proof of Lemma 4, we choose «44-i£ F(l)*+i. The resulting topology

3* is strictly finer than 3.

Lemma 6. If 3 is a nondiscrete, first countable ring topology for I,

then there exists a topology 3* of type (*) such that 3 5 3*.

Proof. It is easily seen that there exists a fundamental system

{ U„; nEN} of 3-neighborhoods of zero such that for all nEN

(i)     Un+l+Un+lQUn,

(Ü)     Un+1- Un+lQU„,

(ÏÛ)    Nn+l-Un+lQUn,

(iv)    Un=-Un.

Clearly we may again apply the method of Lemma 4 to choose a

defining sequence («,)¡<ew with the additional property that «<£ l7<.

It follows that the topology 3', of type (*), so defined is finer than 3.

By Lemma 5, there exists a topology 3* of type (*) strictly finer than

3.

Corollary. There exists a ring topology on I which is not first counta-

ble.

Proof. The standard Zorn's lemma argument shows that any

fundamental neighborhood system of zero, with respect to a nondis-

crete ring topology on 1", is contained in a maximal system of the

same type. Thus, there exists a maximal nondiscrete ring topology

on I. In view of the preceding corollary, such topologies are not first

countable.
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