
ZEROS OF FUNCTIONS OF REGULAR
GROWTH ON A LINE

W. D. BOUWSMA1

1. Introduction. Levinson [2] and others have worked on the dis-

tribution of zeros of functions of exponential type which satisfy condi-

tions similar to boundedness on the real axis. For such functions Lev-

inson showed that the expression Er*-1 sm ^*ls bounded, where the

zeros of the function are zk = rkem. It is the purpose of this paper to

obtain results concerning the distribution of zeros of functions of ex-

ponential type and regular exponential growth on the real axis.

We consider a function/(z) of exponential type having the property

that i£ = lim*_„ x_1 log |/(*)/( — x)\ exists, where the asterisk indi-

cates that one may discard certain intervals about the zeros of /(z)

in the evaluation of the limit, and these intervals can be taken so

small as to form a set of logarithmic measure zero. The main result

is that for such a function, if the zeros of/(z) in the upper half-plane

are denoted by z* = r*e<9*, then

(1) lim (log P)-1 E T1 sin 0* = K/2t.

Moreover, if /(z) is of exponential type, and if the limit superior of the

left-hand side of (1) is L, it is shown that lim supjj,» P_1«(i?) ^L.

Thus regular exponential growth on the real axis does yield informa-

tion on the distribution of zeros of/(z), although this information is

less precise than that obtained from conditions such as boundedness

on the real axis.

2. Zeros and an integral description of growth. Since our interest

is in the asymptotic behavior of /(z), there is no loss of generality in

assuming that/(0) = 1. We denote the zeros of/(z) in the upper half-

plane by zk = rkeiek.

Theorem 1. Iffiz) is of exponential type, then

ar2log|/(x)/(-x)| dx
i

if either limit exists.
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Proof. Carleman's formula asserts that

(2)   ,
Z (r*-1 - R-'fk) sino* = (irle)-1 f   log \f(Rei6) | sin 0 dd

+ (»-1 f   (x-2 - R-2) log|/(*)/(-*) | dz + A,
J o

where ^4 is a constant. The theorem will be proved by making esti-

mates on various terms of (2).

We first show that as R—» »,

(3) B(R) = (rR)-1 f   log | f(Rei6) | sin0¿0 = O(l).
J o

It is clear that B(R) ^O(l). Now if we write

log | /(to") |  = log+1 f(Re<°) | + log-1 /(líe") | ,

and observe from Jensen's formula that

/
\og\f(Re<°)\d6 2:0,

a simple computation shows that B(R) à 0(1), and (3) follows.

We next show that if {zk} = {r*e's*} is any countable set of points

in the upper half-plane with no finite limit point,

(4)  lim (log R)-1 Z (rr1 ~ Rr*rt) sin0* = lim (logl?)"1 Z rr1 sin 0*,
ß-»«o rtsS B-»" rjtsR

if either limit exists.

Suppose the limit of the left-hand side of (4) exists and is denoted

by L. Writing the right-hand side of (4) as limÄ_M C(R), it is immedi-

ate that lim miß..«, C(R) ^L. On the other hand, let n be any positive

integer and observe that

Z (rr1 - R-*rk) sin 0* ̂    Z   (f1 - ^"2^) sin 0*
,_, r*S« TkiR/n

è «~2(«2 - 1)   Z   rr1 sin 0*.
r*S.R/n

Now divide (5) by log (R/n) and let 1?—» «. We see that

w2 — 1                 „-,     ft1 sin 0*
(6) -lim sup     ¿-i     -^ £•

n2      B-.«     riSÄ/n log (R/n)

Replace R/n by 1? in (6). Finally since n can be taken arbitrarily

large, we have
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lim sup C(P) ^ L,

from which (4) follows. The proof of the converse is essentially the

same and will not be carried out.

We next show that

(7) R~2f   log |/(*)/(-*) | d* = 0(1).

Since /(z) is of exponential type, we have at once

P~2 I     log !/(*)/(-*) | dx £ Oil).

Now form a function with real zeros which are the moduli of the zeros

of /(z), and denote the new function by

(8)

Then (cf. [1, p. 143]),

P(«) = IT (1 - «7'î).

(9)   log
/(*)/(-*)

Fix)
+ log

/(*)/(-*)

Fi-x)
= 2Elog

¿ 9.
Zt — Xa

2 o
rt —x2

> 0

since every summand on the right-hand side is non-negative.

Since P(z) has only real zeros, it follows [l, pp. 86-88] that

(10)
■/.

P-2        log | F(x)F(-x) | dx = 0(1).

From (9) and (10) we can deduce (7). The theorem now follows from

(2), (3), (4), and (7).

Corollary, i//(z) is of exponential type, and hid) is its indicator

function, if lim supB_w C(P) =L, and if Eus« P-2*^ sin 0/t = o(log R),

then A(0)4-ä(7t) ^2ttL. In particular, if /(z) is of exponential type and

liniß^o C(R)=L, then A(0) +hiw)^2wL.

3. A condition that the limit of the integral exist.

Theorem 2. If /(z) is of exponential type, and if

(11) lim*x-Mog|/(x)/(-x)|  =K,

where the asterisk indicates that the limit exists if one deletes a set of

finite logarithmic measure, then limß..w CiR) =K/2ir.
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Proof. If the asterisk were not present in (11), Theorem 2 would

follow at once from Theorem 1. Let £ be a set of finite logarithmic

measure, and let E(R) denote the intersection of E with the interval

[l, R]. The theorem will be proved if we can show that

(12) f      x-2 log | /(*)/( - x) | dx = o(log R).
J E{R)

Since f(z) is of exponential type we have

(13) f      x~2 log |/(*)/(-*) | dx g 0(1).
J EÍ.R)

Consider the associated function F(z) defined by (8). It will suffice to

show that

(14) f     x~2 log | F(x) | dx è o(log R),
J E{R)

for (12) will then follow from (14), (9), and (13).

Let us write

(15) F(x) = Pi(x)P2(x)Pz(x)Pi(x),

where each Pi(x) is the product formed from certain zeros of F(z).

More precisely, Pi(x) is the product of factors of the form (1 — x2/r„)

for zeros rn<x(\— r¡), where r¡ is some fixed positive number not ex-

ceeding 1. P2(x) is the product formed from zeros rn such that

x(í—r¡) ^rn<x(l+r¡). P$(x) is the product formed from zeros rn such

that x(\ +r¡) gr„<2x, and Pt(x) is the product formed from the zeros

r„ such that rn ^ 2x.

We next proceed to estimate Je(R)X~2 log | Pi(x) \ dx for i= 1, 2, 3, 4.

Since F(z) is of exponential type, there is some constant T such that

n(r) ^rT for all r. Since the number of zeros of F(x) between x(í+r¡)

and 2x cannot exceed 2xT, it follows that

log | P,(x) | ê2*riog|l - (i + v)-2\,

and since E is of finite logarithmic length,

(16) f     x-2log\Pz(x)\dx^ 0(1).
J E(R)

Exactly the same argument shows that

(17) f      s-2log| Pi(x)\dx^ 0(1).
J E(R)
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If we use the series expansion for log (1 —1/22*) and compare with

a geometric series we see that if 2*x^rn<2*+1x,

■ 2      2 i 2fe 2Jfc

(18) log | 1 - x lu |   è log(l - 1/2  ) > - 2/2 (for k è 1).

Since «(ex) ^ Tkx, for a given x we can apply (18) to the r„'s in each

interval [2*x, 2i+1x) and add to obtain

(19) E log | 1 - xlu |  > - iTx.
r„£2i

From (19) and the fact that E is of finite logarithmic measure, it

follows that

(20) f     or2 log | Piix) | dx è 0(1).
J E(R)

It remains to consider P2(x). For x^l,

log | 1 — x lu |  > log I u — x I  — 2 log u.

Now set

and

Qi(x) = E log | r„ - x |
*U->¡) Sr„<*(l+ij)

QÁx) = E 2 log u
*(l-ï)ir„<i(l+()

For x^2, we have

(21) Q2ix) g 2Tx(l + r,) log x(l + v) < 4P* log 2x g 8Px log x.

A routine computation shows that

(22) I       x"1 log x ¿x = o(log R).
J EÍR)

It now follows from (21) and (22) that

(23) f     x~2Q2Íx)dx = o(logP).

Finally, we consider the contribution of Qi(x). It is easily seen that

over any interval, /<? log \r„ — x\ dx^—2. Thus
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x-2Qi(x) dx £ - 2(2"2*+2) -2ftr(l + ij) è - 4r/24-2.
/ 2*-l

It then follows that

/,
x~2Qi(x) dx^ -ST;

2

a fortiori,

(24) f      ar2<2i(*) ¿x = 0(1).
J B(S)

From (15), (16), (17), (20), (23), and (24) we can deduce (14), which

proves the theorem.

4. The relation between C(R) and n(R).

Theorem 3. If f(z) is of exponential type, and lim supß..«, C(R) =L,

then lim sup«-.» R_in(R) ~^L, where n(R) is the number of zeros of f(z)

in the upper half-plane with \Zk\ ÚR- If n"(R) represents the number of

zeros of f(z) in the sector 5= {z: \ \ir — arg z\ <a} where a<\ir, and if

lim inÍR..«, C'(R)=L, where the prime indicates summation only over

the zeros in S, then lim inf«,,» R~ln"(R) f^L sec a.

Proof. If we write 2~Ln¡¡R r¿"1 as a Stieltjes integral and integrate

by parts, we obtain

/> R /» Br1 dn(t) = R-*n(R) + J    t~2n(t)dt.
o J o

If we now assume that lim sup«<00 R~1n(R) <L, and use this in (25),

we easily reach a contradiction. The proof of the second assertion is

essentially the same.

Both estimates of Theorem 3 are best possible as is easily seen by

considering suitable exponential binomials. For example, if f(z)

= 1-f-exp(ttLz), then lim^-.«, C(R) =limBJ.co R~1n(R) =L. Similarly,

if f(z) = l+exp{27rL( —cos ß+i sin ß)z}, then limÄ_M C(R) =L sin ß,

and for a>ß, limits R~1na(R)=L. By choosing ß arbitrarily close

to a, we see that the second estimate is also the best possible.

References

1. R. P. Boas, Jr., Entire functions, Academic Press, New York, 1954.

2. N. Levinson, Gap and density theorems, Amer. Math. Soc. Colloq. Publ. Vol.

26, Amer. Math. Soc, Providence, R. I., 1940.

Pennsylvania State University


