
A UNIQUENESS THEOREM FOR ENTIRE FUNCTIONS

RICHARD F. DEMAR1

Given a sequence {£„} of linear functionals defined on a linear space

C of functions, the uniqueness problem is to find a subspace CiQC

such that/ in Ci is uniquely determined by the sequence of numbers

{£„(/)}; that is, gECi and £„(g)=0; w = 0, 1, 2, • • •   implies g = 0.

We shall use the following notation. Let K denote the class of all

entire functions of exponential type. If 0, is a simply-connected do-

main in the complex plane, let K [A] denote the class of all /in X

such that the Borel transform of /, which we shall denote by F, is

regular on A', the complement of fl. (If /(z) = ^2a„zn/n\, then Ftf)

= ^flnf-"-1.) We shall deal with sequences { £„} of linear functionals

defined on a class K[Q] by

(1) £«(/) - 4~- f lw(^F^ #
¿iri J r

for some function W regular on ß, where T is a simple contour con-

tained in Í2 and enclosing all singularities of F. This class of func-

tionals has been studied by Gelfond [5], Buck [3], and the author

[4]. Examples of functionals having a representation (1) are £„(/)

=/(«), £„(/)=A"/(0), and £„(/) =/(n>(«) for which the functions

W(f) are e{, e( — l, and fef, respectively.

Previous uniqueness theorems which apply to the class of sequences

of functionals having a representation (1) have been obtained by

finding a class K[Q] of functions/ representable by an interpolation

series having the £„(/) as coefficients. If for all/ in i£[ß] this series

converges to/ in some region or is summable by some totally regular

method of summation, then ii[fi] is a uniqueness class for {£„}.

The best such sufficient condition was obtained by Buck [3] using

Mittag-Leffler summability. It states that if Q contains the origin,

W(0) =0, W is univalent on fi and maps Q onto a set which is star-

shaped with respect to the origin, then K [Í2] is a uniqueness class for

{£„}. Gelfond [5] showed that the condition that W is univalent on

fl is necessary for K [ñ] to be a uniqueness class for {£„}. We show
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that this one condition is also sufficient. The proof is simple and does

not use interpolation series. It is similar to a proof given by Boas and

Buck [2, p. 26] of a theorem on sources of nontrivial representations

of zero.

Theorem. Let ß be a simply-connected domain and let W be regular

on ß. Let £n be defined on K[ü] by (1) with this W. Then a necessary

and sufficient condition for K~[ti] to be a uniqueness class for {£n} is

that W be univalent on ß.

Proof. We give Gelfond's proof of necessity. If W is not univalent

on ß, then there exist fi, f2 in ß such that fi^fa, but W(Çi) = W(Ç2).
Let /(*)=*■-eft». Then £„(/)= [W(Çi)]n- [W(£,)]n = 0; n = 0, 1,

2, • • ■ , but/^0.
To prove sufficiency, let W be univalent on ß and let / in K[Q]

satisfy £n(/)=0; re = 0, 1, 2, • • • , i.e.,

f [W(0]nF(U df = 0,       n = 0, 1, 2, • • ■ .
J r

Let tiw be the image of ß and Yw the image of T under w= W(Ç). Since

W is regular and univalent on ß, T«, is a simple contour enclosing the

image of the region enclosed by V. Let f = Z(w) be the inverse of W

which maps ßM onto ß. Then Z is regular and univalent on ß„; so

Z'(w) ¿¿0 on ß*. Since Y encloses all singularities of F(Ç), Tw encloses

all singularities of F(Z(w)); so, F(Z(w))'is analytic on Tw. Substitut-

ing f = Z(w) in the integrals, we obtain

j    wnF(Z(w))Z'(w) dw = 0,       n = 0, 1, 2, • • • .

Multiplying the wth integral by z"/n\ and summing, we obtain

I    e'wF(Z(w))Z'(w) dw = 0

for all z. Since F(Z(w))Z'(w) =G(w) is analytic on Tw, this implies, by

a lemma of Pólya [l, p. HO], that G is analytic inside r„. Then,

since Z'(w) is analytic and nonzero inside Yw, F(Z(w))=G(w)/Z'(w)

is analytic inside Yw. Since Z is analytic inside r„, this implies F is

analytic inside Y. But F is also analytic outside and on Y and at «> ;

so £ is a constant. Since F(<x>)=0, F = 0, and this implies/ = 0, which

completes the proof.

A simple example of a specialization of the theorem is that if ß

is a simply-connected domain, then K[Q] is a uniqueness class for
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either {/(»)} or {A"/(0)} if and only if f£ß implies (f+2»«)^,
n = l, 2, • • • . From this, dropping the requirement that G must be

open in the notation if [G], the class i£[ßi] is a uniqueness class for

either of these sequences of functionals if ßi is the strip {x-Hy]

— ir<y¿ir}. The class K[ßi] is maximal in the sense that if ß2 is any

set which properly contains ßi, then K [ß2] is not a uniqueness class.

That K[ßi] is a uniqueness class follows from the fact that if the

Borel transform of a function / is analytic on the complement of ßi,

then it is analytic on the complement of some open horizontal strip

of width 27T.
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