
ALGEBRAIC ASPECTS OF PROLONGATIONS

H. H. JOHNSON

Exterior differential systems and their prolongations were intro-

duced by É. Cartan [2, pp. 585 ff.]. They have been studied by
E. Kahler [3, pp. 50-51], Y. Matsushima [6], M. Kuranishi [4], [5]

and É. Cartan himself [2, Chapter 6]. Two viewpoints seem to pre-

dominate in modern treatments. One approach is geometric [4], [6].

The prolonged system is defined on a submanifold of a Grassmann

bundle. In [l], [5] the equivalence between exterior differential sys-

tems and partial differential equations is emphasized, as one uses for

new variables the partíais of the given dependent variables with

respect to the independent variables. [5] uses jets to accomplish this.

In many of É. Cartan's applications of prolongations, however, a

purely algebraic flavor prevails [l, pp. 116-119], [2, p. 585]. This is

particularly true in infinite continuous groups [l, pp. 638-639 and

the examples following]. The author seems to be merely introducing

as many new variables as possible. Indeed, in [2, p. 1361] after de-

fining prolongations according to the first method above, he states

that this can be obtained by solving certain equations in the most

general possible way, which is a purely algebraic problem.

It is our purpose to discuss this algebraic problem and show that

É. Cartan's "normal prolongation" does indeed possess the maximal

property among all possible prolongations. We begin as he did in

[l, pp. 577-578], assuming that the system is of the form

dd m ajfW A ir   modulo (6 , • • •, 0 ).

Then d can be considered linear over the ring of O or C°° functions,

since

d(/0>) ==/d0* modulo (ft1, • • • , 0").

Hence the problem reduces to the study of linear transformations

between certain modules.

A is a fixed commutative ring with identity element. All modules

are unitary A -modules. J is a fixed module called the module of

independent variables.

Definition 1. A differential system (S, d, T) consists of two modules

5 and T together with a linear transformation d: S—»J® T. T is said

to be minimal when it contains no proper submodule V such that

d(S)CI®T'.
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Let j: I®I—*I/\I be the defining epimorphism. i will denote the

identity transformation on various modules.

Definition 2. A prolongation of (S, d, T) is a differential system

(T, 8, U) such that if i®8: I®T-^I®I®U, j®i: I®I®U^(If\I)
®U, then (J®i)(i®8)d = 0.

Proposition 1. If (T, 8, U) is a prolongation of (S, d, T) and
<j>:U-^>U' is a linear transformation on U to a module U', then

(T, (i®4>)8, U') is a prolongation of (5, d, T).

Proof. This follows from commutativity in the diagram

d                 i®8                        j®i
S->I® T->I®I® U—->I AI ® U

i®4>\, ,    . {i®4>
I®I®U'   J   l ) / A / ® U'.   Q.E.D.

Let U*, I*, T*, etc., denote the dual modules to U, I, T, etc.

Definition 3. The prolongation (T, d, U') is said to be obtained

from the prolongation (T, 8, U) if there exists <f> in Hom(£/, U') so

thatd = (i®<j>)8.

Proposition 2. Let V be a submodule of Hom(P, /). Then there

exists a canonical linear transformation 8: T-^>I**®V*. If X and Y

are any two modules and 4> is in Hom(X, F), £ is in X®T, X is in

Y*®I*, and 6 is in V, then

(1) <(<*> ® 5)(Ö, X ® d) = <(<*> ® 0)(£), X).

Proof. Given / in T, we define 5(0 to be that element of I**® V*

= (I*® V)* whose value on co*® 0 in I*® Vis given by (8(t), w*® 6)

= (d(t), «*). Since this is bilinear in w* and 6, it defines an element of

(I*®V)*.
In order to prove (1), it suffices to suppose £ = x®t, \ = y*® u*.

Then

((<P ®8)(x® l), y*®ü>*®d)= (<¡>(x) ® 8(1), y* ® u* ® 6)

= <*(*), /><«(/), co* ® 0) = <*(*), y*)(6(f), «*>

= <(* ® 8)(x ® t), y* ® a*). Q.E.D.

Proposition 3. Let V= {0GHom(P, I)\j(i® 0)d = 0}. IfI** = I,
then (T, 8, V*) is a prolongation of (S, d, T).

Proof. We must prove that for any s in S, 0 = (j®i)(i®8)d(s)

£IAI®V* = (I*AI*®V)*. Letju®0 be an element of I*AI*®V.
Then
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((j ® i)(i ® 5)d(s),li® 0) = {(i ® 5)d(s),f(p.) ® 6)

= ((i®e)d(s),f(M)) by(l)

= (j(i ® 6)d(s), M).

However, j(i®6)d(s) =0 by the definition of V. Q.E.D.

Definition 4.  (T, 8, V*) is the normal prolongation.

Theorem. Assume that I has a finite basis. Let (T, d, W) be any

minimal prolongation of (S, d, T) where W= W**. Then (T, d, W) is

obtained from the normal prolongation of (S, d, T).

Proof. There exists a canonical linear transformation \p: W*

—>Hom(r, 7) defined as follows. For w* in W*, t in T and w* in I*,

(\l/(w*)(t), o>*)=(d(t), u*®w*). Since 7** = 7, this is well-defined.

Suppose w* is in ker^. Then for all t in T, all co* in I*, {d(t),03*®w*)

= 0. Let Wi= {w<E.W\ (w, w*) = 0}. Let wi, • ■ ■ , co„ be a basis of 7,

w*i • " " . <*>* the dual basis. Suppose £= J2 a,((¿j®w¡)(E:I®W satis-

fies (£, u*®w*) = 0 for every w* in 7*. When u* = u*, (I-, w*®w*)

= ak{wj, wt) = Q. Hence £ is in I®Wl Hence d(T)CI®W1. Since IF

is minimal, W= W\, so w* = 0. Thus, ker i^ = 0, and we may consider

IF*CHom(r, 7). Furthermore, under this identification, d is the map

5 of Proposition 2.

If 0 is in W*, ¡x is in 7* A 7* and s is in S, then since (T, ô, W) is a

prolongation of (5, d, 7),

0 = {(j ® i)(i ® 5)d(s), m ® 6) = ((î ® ô)d(s),j*(p) ® 6)

= {(i ® 8)d(s), j*(jj.)),       by Proposition 2

= <0' ® e)d(s), n).

Hence 6 is in V, so IF*C V- The dual map to the injection in: W*—*V

then satisfies d = (i®i*)d. Q.E.D.
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